Advanced Search
Volume 38 Issue 11
Dec.  2016
Turn off MathJax
Article Contents
XU Cong’an, HE You, XIA Shutao, CHENG Juntu, DONG Yunlong. Particle Probability Hypothesis Density Filter Based on Stochastic Perturbation Re-sampling[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114
Citation: XU Cong’an, HE You, XIA Shutao, CHENG Juntu, DONG Yunlong. Particle Probability Hypothesis Density Filter Based on Stochastic Perturbation Re-sampling[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT160114

Particle Probability Hypothesis Density Filter Based on Stochastic Perturbation Re-sampling

doi: 10.11999/JEIT160114
Funds:

The National Natural Science Foundation of China (61471383, 61304103)

  • Received Date: 2016-01-26
  • Rev Recd Date: 2016-07-08
  • Publish Date: 2016-11-19
  • As a typical implementation of the Probability Hypothesis Density (PHD) filter, Particle PHD (P-PHD) is suitable for highly nonlinear systems and widely used in Multi-Target Tracking (MTT). However, the resampling in P-PHD filter, recommended to avoid particle degeneracy, introduces the problem of diversity loss among the particles, namely particle impoverishment problem. To solve the problem and improve the performance of the P-PHD filter, a novel filter based on stochastic perturbation re-sampling is proposed. First, a comprehensive analysis on the particle impoverishment problem of P-PHD filter is presented. Then for the purpose of keeping the particle diversity, a new stochastic perturbation re-sampling algorithm is developed, which generates new particles according to the position and duplicating times of the original particles, and removes some excessive copied particles. Finally, the re-sampling algorithm is integrated into the P-PHD filter framework and a Stochastic Perturbation Particle PHD (SPP-PHD) filter is proposed. Numerical examples show that the proposed filter can overcome the particle impoverishment problem and improve the estimation performance on the premise of not significantly improving the simulation time.
  • loading
  • BAR-SHALOM Y and FORTMANN T E. Tracking and Data Association[M]. Boston: Academic Press, 1988: 32-36.
    BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1): 5-18. doi: 10.1109/MAES. 2004.1263228.
    FORTMANN T E, BAR-SHALOM Y, and SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184. doi: 10.1109/JOE.1983.1145560.
    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME Journal of Basic Enginerring, 1960, 82(2): 95-108.
    何友, 修建娟, 关欣, 等. 雷达数据处理及应用[M]. 第3版. 北京: 电子工业出版社, 2013: 31-35.
    HE You, XIU Jianjuan, GUAN Xin, et al. Radar Data Processing with Applications[M]. Third Edition. Beijing: Publishing House of Electronics Industry, 2013: 31-35.
    BUCY R S and SENNE K D. Digital synthesis of nonlinear filters[J]. Automatica, 1971, 7(3): 287-298. doi: 10.1016/0005- 1098(71)90121-X.
    CARP J, CLIFFORD P, and FEARN P. Improved particle filter for nonlinear problems[J]. IET Radar, Sonar and Navigation, 1999, 146(1): 1-7. doi: 10.1049/ip-rsn:19990255.
    ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. doi: 10.1109/78.978374.
    SPALL J C. Estimation via markov chain monte carlo[J]. IEEE Control Systems Magazine, 2003, 23(2): 34-45. doi: 10.1109/MCS.2003.1188770.
    FU Xiaoyan and JIA Yingmin. An improvement on resampling algorithm of particle filters[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5414-5420. doi: 10.1109/ TSP.2010.2053031.
    程水英, 张剑云. 裂变自举粒子滤波[J]. 电子学报, 2008, 36(3): 500-504.
    CHENG Shuiying and ZHANG Jianyun. Fission bootstrap particle filtering[J]. Acta Electronica Sinica, 2008, 36(3): 500-504.
    程水英, 张剑云. 粒子滤波评述[J].宇航学报, 2008, 29(4): 1099-1111.
    CHENG Shuiying and ZHANG Jianyun. Review on particle filters[J]. Journal of Astronautics, 2008, 29(4): 1099-1111.
    张琪, 乔玉坤, 孔祥玉, 等. 随机摄动强跟踪粒子滤波算法[J]. 物理学报, 2014, 63(11): 1-7. doi: 10.7498/aps.63.110505.
    ZHANG Qi, QIAO Yukun, KONG Xiongyu, et al. Study on stochastic perturbation strong tracking particle filter[J]. Acta Physicsa Sinica, 2014, 63(11): 1-7. doi: 10.7498/aps. 63. 110505.
    MAHLER R. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178. doi: 10.1109/ TAES.2003.1261119.
    翟岱亮, 雷虎民, 李海宁, 等. 概率假设密度滤波的物理空间意义[J]. 物理学报, 2014, 63(20): 1-6. doi: 10.7498/aps. 63.200204.
    ZHAI Dailiang, LEI Humin, LI Haining, et al. Derivation of the probability hypothesis density filter via the physical- space approach[J]. Acta Physica Sinica, 2014, 63(20): 1-6. doi: 10.7498/aps.63.200204.
    VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104. doi: 10.1109/TSP.2006. 881190.
    VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for Bayesian multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245. doi: 10.1109/TAES.2005. 1561884.
    WU Xinhui, HUANG Gaoming, and GAO Jun. Particle filters for probability hypothesis density filter with the presence of unknown measurement noise covariance[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1517-1523. doi: 10.1016/j.cja. 2013.10.007.
    徐从安, 刘瑜, 熊伟, 等. 新生目标强度未知的双门限粒子PHD滤波器[J]. 航空学报, 2015, 36(12): 3957-3966. doi: 10.7527/S1000-6893.2015.0104.
    XU Congan, LIU Yu, XIONG Wei, et al. A dual threshold particle phd filter with unknown target birth intensity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3957-3966. doi: 10.7527/S1000-6893.2015.0104.
    FRANCESCO P and DU Y K. A particle multi-target tracker for superpositional measurements using labeled random Finite sets[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4348-4358. doi: 10.1109/TSP.2015. 2443727.
    YOHAN P, MARK M, FRANCOIS D, et al. Marginalized particle phd filters for multiple object bayesian filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1182-1196. doi: 10.1109/TAES.2014.120805.
    LI Tiancheng, SUN Shudong, SATTAR T P, et al. High-speed Sigma-gating SMC-PHD filter[J]. Signal Processing, 2013, 93(3): 2586-2593. doi: 10.1016/j.sigpro.2013.03.011.
    LI Bo. Multiple-model Rao-blackwellized particle probability hypothesis density filter for multitarget tracking[J]. International Journal of Control, Automation, and Systems, 2015, 13(2): 426-433. doi: 10.1007/s12555-014-0148-7.
    SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457. doi: 10.1109/TSP.2008.920469.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1369) PDF downloads(417) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return