Citation: | GAO Hongmin, LI Chenming, ZHOU Hui, ZHANG Zhen, CHEN Linghui, HE Zhenyu. Dimension Reduction and Classification of Hyperspectral Remote Sensing Images Based on Sensitivity Analysis of Artificial Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2715-2723. doi: 10.11999/JEIT160052 |
杜培军, 谭琨, 夏俊士. 高光谱遥感影像分类与支持向量机应用研究[M]. 北京: 科学出版社, 2012: 6-35.
|
DU Peijun, TAN Kun, and XIA Junshi. Classification of Hyperspectral Remote Sensing Images and Applied Research of SVM[M]. Beijing: Science Press, 2012: 6-35.
|
童庆禧, 张兵, 郑兰芬. 高光谱遥感原理、技术及应用[M]. 北京: 高等教育出版社, 2006: 33-56.
|
TONG Qingxi, ZHANG Bing, and ZHENG Lanfen. Hyperspectral Remote Sensing-Principles, Techniques and Applications[M]. Beijing: Higher Education Press, 2006: 33-56.
|
吴倩, 张荣, 徐大卫. 基于稀疏表示的高光谱数据压缩算法[J]. 电子与信息学报, 2015, 37(1): 78-84. doi: 10.11999/ JEIT140214.
|
WU Qian, ZHANG Rong, and XU Dawei. Hyperspectral data compression based on sparse representation[J]. Journal of Electronics Information Technology, 2015, 37(1): 78-84. doi: 10.11999/JEIT140214.
|
GAO Hongmin, XU Lizhong, LI Chenming, et al. A new feature selection method for hyperspectral image classification based on simulated annealing genetic algorithm and choquet fuzzy integral[J]. Mathematical Problems in Engineering, 2013: 1-14. doi: 10.1155/2013/537268.
|
GAO Lianru, LI Jun, KHODADADZADEH M, et al. Subspace-based support vector machines for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 349-353. doi: 10.1109/LGRS.2014. 2341044.
|
GURRAM P and KWON H. Coalition game theory based feature subset selection for hyperspectral image classification [C]. IEEE International Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 3446-3449.
|
FALCO N, BENEDIKTSSON J A, and BRUZZONE L. A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2183-2199. doi: 10.1109/JSTARS.2014.2329792.
|
姜宇, 肖鸿, 刘兴鹏, 等. BP神经网络在异向介质基本结构分析中的应用[J]. 电子与信息学报, 2010, 32(1): 195-198. doi: 10.3724/SP.J.1146.2008.01703.
|
JIANG Yu, XIAO Hong, LIU Xingpeng, et al. Applications of BP neural network in analyzing metamaterials elemental basic structure[J]. Journal of Electronics Information Technology, 2010, 32(1): 195-198. doi: 10.3724/SP.J.1146. 2008.01703.
|
张兵, 高连如. 高光谱图像分类与目标探测[M]. 北京: 科学出版社, 2011: 85-101.
|
ZHANG Bing, GAO Lianru. Hyperspectral Image Classification and Target Detection[M]. Beijing: Science Press, 2011: 85-101.
|
蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报(自然科学版), 2008, 44(1): 9-16.
|
CAI Yi, XING Yan, and HU Dan. On sensitivity analysis[J]. Journal of Beijing Normal University(Natural Science), 2008, 44(1): 9-16.
|
张军, 刘祖强, 张正禄, 等. 基于神经网络和模糊评判的滑坡敏感性分析[J]. 测绘科学, 2012, 37(3): 59-62.
|
ZHANG Jun, LIU Zuqiang, ZHANG Zhenglu, et al. Susceptibility of landslide based on artificial neural networks and fuzzy evaluating model[J]. Science of Surveying and Mapping, 2012, 37(3): 59-62.
|
ZHANG Junping, ZHANG Ye, ZOU Bin, et al. Fusion classification of hyperspectral image based on adaptive subspace decomposition[C]. IEEE International Conference on Image Processing, Vancouver, BC, Canada, 2000, 3: 472-475.
|
YU Feng and XU Xiaozhong. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134: 102-113. doi: 10.1016/j.apenergy.2014.07.104.
|
LIU Ruixin, ZHANG Xiaodong, ZHANG Lu, et al. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network[J]. Experimental and Therapeutic Medicine, 2014, 7(6): 1696-1702. doi: 10.3892/etm.2014.1614.
|
钱文江, 李同春, 丁林. 基于改进BP神经网络的库区渗漏量敏感性分析[J]. 三峡大学学报(自然科学版), 2012, 34(6): 23-27.
|
QIAN Wenjiang, LI Tongchun, and DING Lin. Sensitivity analysis of reservoirs seepage discharge based on improved BP network[J]. Journal of China Three Gorges University (Natural Science), 2012, 34(6): 23-27.
|
WANG Lin, ZENG Yi, and CHEN Tao. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting[J]. Expert Systems with Applications, 2014, 42(2): 855-863. doi: 10.1016/j.eswa.2014. 08.018.
|
RUCK D W, ROGERS S K, and KABRISKY M. Feature selection using a multilayer perceptrons[J]. Journal of Neural Network Computing, 1990, 2(2): 40-48.
|
ZURADA J M, MALINOWSKI A, and USUI S. Perturbation method for deleting redundant inputs of perceptron networks[J]. Neurocomputing, 1997, 14(2): 177-193. doi: 10.1007/978-3-662-45652-1_35.
|