Advanced Search
Volume 38 Issue 11
Dec.  2016
Turn off MathJax
Article Contents
LIU Caixia, LU Ganqiang, TANG Hongbo, WANG Xiaolei, ZHAO Yu. Adaptive Deployment Method for Virtualized Network Function Based on Viterbi Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2922-2930. doi: 10.11999/JEIT160045
Citation: LIU Caixia, LU Ganqiang, TANG Hongbo, WANG Xiaolei, ZHAO Yu. Adaptive Deployment Method for Virtualized Network Function Based on Viterbi Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2922-2930. doi: 10.11999/JEIT160045

Adaptive Deployment Method for Virtualized Network Function Based on Viterbi Algorithm

doi: 10.11999/JEIT160045
Funds:

The National Science and Technology Major Project of China (2013ZX03006002), The National 863 Program of China (2014AA01A701), The National Natural Science Foundation of China (61521003), The Ministry of Science and Technology Support Plan (2014BAH30B01)

  • Received Date: 2016-01-13
  • Rev Recd Date: 2016-04-18
  • Publish Date: 2016-11-19
  • In order to deal with the explosive growth of mobile data traffic, a novel design of network architecture will be adopted in 5G. Software Defined Network (SDN) and Network Function Virtualization (NFV) are the key technologies for network transformation, which will drive the innovation of mobile communication network architecture. The deployment of Virtualized Network Function (VNF) in service chain is a critical issue in network virtualization. To overcome the ignorance of VNF sequence constraints in service chain and the characteristics of mobile business in existing literatures, an adaptive deployment method of VNF based on Viterbi algorithm is proposed. With real-time perception of the resources change of underlying nodes, the topology structure will be adjusted dynamically. Hidden Markov model is used to describe the topology information of available nodes with resources constraints in underlying network, and the service path with shortest delay is selected based on Viterbi algorithm in candidate service node. Experimental results show that the process time of service chain can be lower compared with existing algorithm. In addition, the acceptance rates of service chain requests and cost efficiency of underlying resources are also raised.
  • loading
  • HAWILO H, SHAMI A, MIRAHMADI M, et al. NVF: State of the art, challenges, and implementation in next generation mobile networks (vEPC)[J]. IEEE Networks, 2014, 28(6): 18-26. doi: 10.1109/MNET.2014.6963800.
    LI L E, LIAGHAT V, ZHAO H, et al. PACE: Policy-aware application cloud embedding[C]. IEEE International Conference on Computer Communication, Turin, 2013: 638-646. doi: 10.1109/INFCOM.2013.6566849.
    ZHANG Y, BEHESHTI N, BELIVEAU L, et al. Steering: A software-defined networking for inline service chaining[C]. IEEE International Conference on Network Protocols (ICNP), Rio de Janeiro, 2013: 1-10. doi: 10.1109/ICNP. 2013.6733615.
    GIANNOULAKIS I, KAFETZAKIS E, XYLOURIS G, et al. On the applications of efficient NFV management towards 5G networking[C]. IEEE International Conference on 5G for Ubiquitous Connectivity, Levi, 2014: 1-5. doi: 10.4108/ icst.5gu.2014.2581 33.
    MOENS H and DE TURCK F. VNF-P: a model for efficient placement of virtualized network functions[C]. IEEE International Conference on Network and Service Management, Rio de Janeiro, 2014: 418-423. doi: 10.1109/ CNSM.2014.7014205.
    CLAYMAN S, MAINI E, GALIS A, et al. The dynamic placement of virtual network functions[C]. IEEE International Conference on Network Operations and Management Symposium, Krakow, 2014: 1-9. doi: 10.1109/ NOMS.2014.6838412.
    XIA M, SHIRAZIPOUR M, ZHANG Y, et al. Network function placement for NFV chaining in packet/optical datacenters[J]. Journal of Lightwave Technology, 2015, 33(8): 1565-1570. doi: 10.1109/JLT.2015.2388585.
    YOUSAF F Z, LOUREIRO P, ZDARSKY F, et al. Cost analysis of initial deployment strategies for virtualized mobile core network functions[J]. IEEE Communications Magazine, 2015, 53(12): 60-66. doi: 10.1109/MCOM.2015.7355586.
    MATIAS J, GARAY J, TOLEDO N, et al. Toward an SDN-enabled NFV architecture[J]. IEEE Communications Magazine, 2015, 53(4): 187-193. doi: 10.1109/MCOM. 2015. 7081093.
    AISSIOUI A, KSENTINI A, GUEROUI A M, et al. Toward elastic distributed SDN/NFV controller for 5G mobile cloud management systems[J]. IEEE Access, 2015, 3: 2055-2064. doi: 10.1109/ACCESS.2015.2489930.
    BASTA A, KELLERER W, HOFFMANN M, et al. A virtual SDN-enabled LTE EPC architecture: A case study for S-/P-gateways functions[C]. IEEE International Conference on SDN for Future Networks and Services, Trento, 2013: 1-7. doi: 10.1109/SDN4FNS. 2013.670 2532.
    HAN Bo, GOPALAKRISHNAN V, JI Lusheng, et al. Network function virtualization: Challenges and opportunities for innovations[J]. IEEE Communications Magazine, 2015, 53(2): 90-97. doi: 10.1109/MCOM.2015. 7045396.
    MIJUMBI R, SERRAT J, GORRICHO J L, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C]. IEEE Conference on Network Softwarization, London, 2015: 1-9. doi: 10.1109/NETSOFT. 2015.7116120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1490) PDF downloads(692) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return