Advanced Search
Volume 38 Issue 11
Dec.  2016
Turn off MathJax
Article Contents
WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
Citation: WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031

Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice

doi: 10.11999/JEIT160031
Funds:

The National Natural Science Foundation of China (61372167), The Aeronautical Science Foundation of China (20152096019)

  • Received Date: 2016-01-16
  • Rev Recd Date: 2016-07-14
  • Publish Date: 2016-11-19
  • A novel recognition algorithm for Low Probability of Intercept (LPI) radar signal based on deep learning of radar signals Bispectra Diagonal Slice (BDS) is proposed in this paper. Firstly, a Deep Belief Network (DBN) model is established on stacked Restricted Boltzmann Machines (RBM), then the model is used for layer-by-layer unsupervised greedy learning of radar signals BDS. Secondly, a Back Propagation (BP) algorithm is applied to fine tune parameters of DBN model with a supervised way according to learning error. Finally, the BDS-DBN model is constructed to classify and recognize unknown LPI signals. The theoretical analysis and the simulation results show that, the average recognition accuracy of the proposed algorithm for Frequency Modulation Continuous Wave (FMCW), Frank, Costas and FSK/PSK signals can reach 93.4% or ever higher while the SNR is better than 8 dB, which is better than that of Principal Component Analysis-Support Vector Machine (PCA-SVM) algorithm and Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) algorithm.
  • loading
  • PHILLIP E P. Detecting and Classing Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
    LIU Y J, XIAO P, WU H C, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981. doi: 10.1109/JSEE.2015.00106.
    李娜, 王珂, 李保珠. 低截获概率雷达信号检测方法的优化及应用[J]. 光学精密工程, 2014, 22(11): 3122-3128. doi: 10. 3788/OPE. 20142211.3122.
    LI Na, WANG Ke, and LI Baozhu. Optimization and application of LPI radar signal detection method[J]. Optics and Precision Engineering, 2014, 22(11): 3122-3128. doi: 10.3788/OPE. 20142211.3122.
    蔡忠伟, 李建东. 基于双谱的通信辐射源个体识别[J]. 通信学报, 2006, 28(2): 75-79. doi: 10.3321/j.issn:1000-436x.2007.02. 012.
    CAI Zhongwei and LI Jiandong. Study of transmitter individual identification based on bispectra[J]. Journal on Communications, 2006, 28(2): 75-79. doi: 10.3321/j.issn: 1000-436x.2007.02.012.
    王世强, 张登福, 毕笃彦, 等. 双谱二次特征在雷达信号识别中的应用[J]. 西安电子科技大学学报(自然科学版), 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    WANG Shiqiang, ZHANG Dengfu, BI Duyan, et al. Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    徐书华, 黄本雄, 徐丽娜. 基于SIB/PCA的通信辐射源个体识别[J]. 华中科技大学学报(自然科学版), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671-4512.2008.07.004.
    XU Shuhua, HUANG Benxiong, and XU Lina. Identification of individual radio transmitters using SIB/PCA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671- 4512.2008.07.004.
    胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J] . 计算机研究与发展, 2014, 51(9): 1945-1954. doi: 10.7544/issn. 1000-1239.2014.20140189.
    HU Zhen, FU Kun, and ZHANG Changshui. Audio classical composer identification by deep neural network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. doi: 10.7544/issn.1000-1239.2014.20140189.
    SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2014, 61: 85-117. doi: 10.1016/ j.neunet.2014.09.003.
    尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    YIN Baocai, WANG Wentong, and WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.doi: 10.1162/neco.2006.18.7.1527.
    SARIKAYA R, HINTON G E, and DEORAS A. Application of deep belief networks for natural language understanding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 778-784. doi: 10.1109/TASLP. 2014.2303296.
    HINTON G, LI D, DONG Y, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597.
    TABOADA and FERNANDO L. Detection and classification of low probability of intercept radar signals using parallel filter arrays and higher order statistics[D]. [Ph.D. dissertation], Naval Postgraduate School, 2002.
    张旭. 基于信号分析的无线设备指纹特征提取[D]. [硕士论文], 北京邮电大学, 2014: 13-14.
    ZHANG Xu. Wireless devices fingerprint feature extraction based on signal analysis[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2014: 13-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2101) PDF downloads(685) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return