Advanced Search
Volume 38 Issue 11
Dec.  2016
Turn off MathJax
Article Contents
WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
Citation: WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031

Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice

doi: 10.11999/JEIT160031
Funds:

The National Natural Science Foundation of China (61372167), The Aeronautical Science Foundation of China (20152096019)

  • Received Date: 2016-01-16
  • Rev Recd Date: 2016-07-14
  • Publish Date: 2016-11-19
  • A novel recognition algorithm for Low Probability of Intercept (LPI) radar signal based on deep learning of radar signals Bispectra Diagonal Slice (BDS) is proposed in this paper. Firstly, a Deep Belief Network (DBN) model is established on stacked Restricted Boltzmann Machines (RBM), then the model is used for layer-by-layer unsupervised greedy learning of radar signals BDS. Secondly, a Back Propagation (BP) algorithm is applied to fine tune parameters of DBN model with a supervised way according to learning error. Finally, the BDS-DBN model is constructed to classify and recognize unknown LPI signals. The theoretical analysis and the simulation results show that, the average recognition accuracy of the proposed algorithm for Frequency Modulation Continuous Wave (FMCW), Frank, Costas and FSK/PSK signals can reach 93.4% or ever higher while the SNR is better than 8 dB, which is better than that of Principal Component Analysis-Support Vector Machine (PCA-SVM) algorithm and Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) algorithm.
  • PHILLIP E P. Detecting and Classing Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
    LIU Y J, XIAO P, WU H C, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981. doi: 10.1109/JSEE.2015.00106.
    李娜, 王珂, 李保珠. 低截获概率雷达信号检测方法的优化及应用[J]. 光学精密工程, 2014, 22(11): 3122-3128. doi: 10. 3788/OPE. 20142211.3122.
    LI Na, WANG Ke, and LI Baozhu. Optimization and application of LPI radar signal detection method[J]. Optics and Precision Engineering, 2014, 22(11): 3122-3128. doi: 10.3788/OPE. 20142211.3122.
    蔡忠伟, 李建东. 基于双谱的通信辐射源个体识别[J]. 通信学报, 2006, 28(2): 75-79. doi: 10.3321/j.issn:1000-436x.2007.02. 012.
    CAI Zhongwei and LI Jiandong. Study of transmitter individual identification based on bispectra[J]. Journal on Communications, 2006, 28(2): 75-79. doi: 10.3321/j.issn: 1000-436x.2007.02.012.
    王世强, 张登福, 毕笃彦, 等. 双谱二次特征在雷达信号识别中的应用[J]. 西安电子科技大学学报(自然科学版), 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    WANG Shiqiang, ZHANG Dengfu, BI Duyan, et al. Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    徐书华, 黄本雄, 徐丽娜. 基于SIB/PCA的通信辐射源个体识别[J]. 华中科技大学学报(自然科学版), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671-4512.2008.07.004.
    XU Shuhua, HUANG Benxiong, and XU Lina. Identification of individual radio transmitters using SIB/PCA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671- 4512.2008.07.004.
    胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J] . 计算机研究与发展, 2014, 51(9): 1945-1954. doi: 10.7544/issn. 1000-1239.2014.20140189.
    HU Zhen, FU Kun, and ZHANG Changshui. Audio classical composer identification by deep neural network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. doi: 10.7544/issn.1000-1239.2014.20140189.
    SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2014, 61: 85-117. doi: 10.1016/ j.neunet.2014.09.003.
    尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    YIN Baocai, WANG Wentong, and WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.doi: 10.1162/neco.2006.18.7.1527.
    SARIKAYA R, HINTON G E, and DEORAS A. Application of deep belief networks for natural language understanding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 778-784. doi: 10.1109/TASLP. 2014.2303296.
    HINTON G, LI D, DONG Y, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597.
    TABOADA and FERNANDO L. Detection and classification of low probability of intercept radar signals using parallel filter arrays and higher order statistics[D]. [Ph.D. dissertation], Naval Postgraduate School, 2002.
    张旭. 基于信号分析的无线设备指纹特征提取[D]. [硕士论文], 北京邮电大学, 2014: 13-14.
    ZHANG Xu. Wireless devices fingerprint feature extraction based on signal analysis[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2014: 13-14.
  • Cited by

    Periodical cited type(27)

    1. 苏琮智,杨承志,邴雨晨,吴宏超,邓力洪. 基于CNN-Swin Transformer Network的LPI雷达信号识别. 现代雷达. 2024(03): 59-65 .
    2. 宁晓燕,李书凯,孙志国,毛慧敏. 信息跳时架构下分层捷变低截获概率通信波形. 哈尔滨工程大学学报. 2023(04): 664-672 .
    3. 江良剑,谢伟朋,吴力华. 基于降噪模糊函数和EfficientNet的雷达信号识别. 舰船电子工程. 2023(11): 78-83 .
    4. 吴力华,杨露菁,袁园. 基于EEMD降噪和模糊函数奇异值向量的雷达辐射源信号识别算法. 火力与指挥控制. 2022(02): 121-126 .
    5. 曲志昱 ,李根 ,邓志安 . 基于知识蒸馏与注意力图的雷达信号识别方法. 电子与信息学报. 2022(09): 3170-3177 . 本站查看
    6. 邹旭东,杨伍昊,郭潇威,孙杰,郑天依. 基于MEMS谐振器硬件储备池计算的类脑信号处理方法. 信号处理. 2022(11): 2287-2298 .
    7. 普运伟,刘涛涛,吴海潇,郭江. 基于卷积双向长短时记忆网络的雷达辐射源信号识别. 激光与光电子学进展. 2022(22): 361-368 .
    8. 石礼盟,杨承志,王美玲,许冰. 基于深度网络的雷达信号调制方式识别. 兵器装备工程学报. 2021(06): 190-193+218 .
    9. 孙洪颖,陈龙崇,郑传俊,黄劲龙,陈振国,钟丽芬. 面向农业智能装备的表面肌电信号识别. 智慧农业导刊. 2021(01): 1-5 .
    10. 董晓璇,胡华强,程嗣怡. 融合隐马尔科夫模型的雷达工作状态跟踪. 电子测量与仪器学报. 2020(01): 128-133 .
    11. 张忠民,刘刚,刘鲁涛. 基于分数阶傅里叶变换和循环谱的雷达信号调制方式识别. 应用科技. 2020(03): 30-36 .
    12. 杨洋,刘永鹏,于家傲,翁呈祥. 运用深度信念网络的雷达干扰效能评估. 空军预警学院学报. 2020(05): 356-359 .
    13. 倪雪,王华力,徐志军,荣传振. 基于STFT-SST和深度卷积网络的多相码雷达信号识别. 数据采集与处理. 2020(06): 1090-1096 .
    14. 张孟伯,王伦文,冯彦卿. 基于卷积神经网络的OFDM频谱感知方法. 系统工程与电子技术. 2019(01): 178-186 .
    15. 王小瑞,侯兴松,王生霄. 基于YOLOv3网络的超宽带雷达生命信号检测. 国外电子测量技术. 2019(06): 1-8 .
    16. 刘赢,田润澜,王晓峰. 基于深层卷积神经网络和双谱特征的雷达信号识别方法. 系统工程与电子技术. 2019(09): 1998-2005 .
    17. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    18. 刘赢,田润澜,董会旭. 基于多尺度残差网络和小波变换的LPI雷达信号识别. 电讯技术. 2019(12): 1423-1428 .
    19. 徐宇恒,程嗣怡,董晓璇,周一鹏,董鹏宇. 基于DBN特征提取的雷达辐射源个体识别. 空军工程大学学报(自然科学版). 2019(06): 91-96+108 .
    20. 岳嘉颖,胡岚,郑娜娥,蒋春启. 基于双谱三维图像纹理特征的辐射源个体识别. 信息工程大学学报. 2019(06): 678-683 .
    21. 王星,呙鹏程,田元荣,王玉冰. 基于BDS-GD的低截获概率雷达信号识别. 北京航空航天大学学报. 2018(03): 583-592 .
    22. 郭立民,寇韵涵,陈涛,张明. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别. 电子与信息学报. 2018(04): 875-881 . 本站查看
    23. 呙鹏程,王星,程嗣怡,汪峰. 改进Chirplet时频原子的非线性调频信号分解. 西安电子科技大学学报. 2018(01): 123-128 .
    24. 呙鹏程,王星,田元荣. 基于CEEMDAN-ASVM的低截获概率雷达信号识别. 现代雷达. 2018(03): 27-32 .
    25. 戴亮军. 基于频谱和瞬时频率特征的雷达信号识别. 哈尔滨商业大学学报(自然科学版). 2018(05): 568-572+587 .
    26. 苏宁远,陈小龙,关键,牟效乾,刘宁波. 基于卷积神经网络的海上微动目标检测与分类方法. 雷达学报. 2018(05): 565-574 .
    27. 符颖,王星,周一鹏,范翔宇. 基于改进半监督朴素贝叶斯的LPI雷达信号识别. 系统工程与电子技术. 2017(11): 2463-2469 .

    Other cited types(42)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2212) PDF downloads(686) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return