Advanced Search
Volume 38 Issue 10
Oct.  2016
Turn off MathJax
Article Contents
ZHAO Yan, ZHAO Lingjun, ZHANG Siqian, JI Kefeng, KUANG Gangyao. Few-Shot Class-Incremental SAR Image Target Recognition using Self-supervised Decoupled Dynamic Classifier[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3936-3948. doi: 10.11999/JEIT231470
Citation: WU Jiani, CHEN Yongguang, DAI Dahai, CHEN Siwei, WANG Xuesong. Target Recognition for Polarimetric HRRP Based on Fast Density Search Clustering Method[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2461-2467. doi: 10.11999/JEIT151457

Target Recognition for Polarimetric HRRP Based on Fast Density Search Clustering Method

doi: 10.11999/JEIT151457
Funds:

The National Natural Science Foundation of China (61302143, 61490693, 41301490), The National 863 Program of China (2013AA122202)

  • Received Date: 2015-12-24
  • Rev Recd Date: 2016-06-08
  • Publish Date: 2016-10-19
  • A classification algorithm based on the fast density search clustering method is proposed for polarimetric High Resolution Range Profile (HRRP) of man-made target. The polarization and frequency features are used to discriminate scattering centers in order to obtain the feature vectors for target classification. After that, the fast density search clustering method is applied to classifying the man-made target. The experiments show that the feature vectors for target classification can describe the structural properties of the target and can easily be classified. The fast density search clustering method operates simply and efficiently and can be applied to the man-made target classification with excellent performance.
  • 黄培康, 殷红成, 许小剑, 等. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 230-238.
    HUANG P K, YIN H C, XU X J, et al. Radar Target Signature[M]. Beijing: Publishing House of Electronics Industry, 2005: 230-238.
    JACKSON J A and MOSES R. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 525-54l. doi: 10.1109/TAES.2010.5461639.
    JACKSON J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph.D. dissertation], Ohio State University, 2009.
    徐牧. 极化 SAR 图像人造目标提取与几何结构反演研究[D]. [博士论文], 国防科学技术大学, 2008.
    XU M. Extraction and geometrical structure retrieval of man-made target in POLSAR imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2008.
    FULLER D F. Phase history decomposition for efficient scatterer classification in SAR imagery[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2011.
    SAVILLE M A, JACKSON J A, and FULLER D F. Rethinking vehicle classification with wide-angle polarimetric SAR[J]. IEEE Aerospace Electronic Systems Magazine, 2014, 29(1): 41-49. doi: 10.1109/MAES.2014.130057.
    张瑞, 牛威, 寇鹏. 基于样本紧密度的雷达高分辨距离像识别方法研究[J]. 电子与信息学报, 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616.
    ZHANG R, NIU W, and KOU P. Radar high resolution range profiles recognition based on the affinity[J]. Journal of Electronics Information Technology, 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616.
    冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227.
    FENG B, CHEN B, WANG P H, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 1457-1462. doi: 10.11999/ JEIT141227.
    WANG J, LI Y, and CHEN K. Radar high-resolution range profile recognition via geodesic weighted sparse representation[J]. IET Radar, Sonar Navigation, 2015, 9(1): 75-83. doi: 10.1049/iet-rsn.2014.0113.
    POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1067. doi: 10.1109/8.467641.
    代大海. 极化雷达成像及目标特征提取研究[D]. [博士论文], 国防科学技术大学, 2008.
    DAI D H. Study on polarimetric radar imaging and target feature extraction[D]. [Ph.D. dissertation], National University of Defense Technology, 2008.
    KROGAGER E. A new decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525-1526. doi: 10.1049/el:19900979.
    LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: Taylor Francis Group, 2009.
    RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 334(6191): 1492-1496. doi: 10.1126/science.1242072.
    DUNGAN K E, AUSTIN C, NEHRBASS J, et al. Civilian vehicle radar data domes[J]. SPIE, 2010, 7699(5): 731-739. doi: 10.1117/12.850151.
    何护翼. 聚类算法及其应用研究[D]. [硕士论文], 上海交通大学, 2007.
    HE H Y. Study on clustering algorithm and its applications [D]. [Master dissertation], Shanghai Jiao Tong University, 2007.
  • Cited by

    Periodical cited type(16)

    1. 贾盼盼,马雪雪,孙江峰. 基于无线衰落的SIMO中继网络物理层安全性能分析. 无线电工程. 2024(03): 543-549 .
    2. 张晓茜,徐勇军,吴翠先,黄崇文. 智能反射面增强的全双工环境反向散射通信系统波束成形算法. 电子与信息学报. 2024(03): 914-924 . 本站查看
    3. 潘钰,胡航,金虎,雷迎科,冯辉,姜丽,张孟伯. 非授权频段下无人机辅助通信的轨迹与资源分配优化. 电子与信息学报. 2024(11): 4287-4294 . 本站查看
    4. 张延良,田月华,李兴旺,黄高见. 基于MF协议的协作NOMA系统物理层安全性能研究. 电子与信息学报. 2023(04): 1211-1218 . 本站查看
    5. 李兴旺,李岩聪,高向川,于青萍,黄高见. 非理想条件下认知非正交多址接入系统中断性能研究. 电子与信息学报. 2023(07): 2415-2422 . 本站查看
    6. 仲星,李君,李正权,朱明浩,沈国丽,张茜茜. D2D通信网络中基于深度强化学习的能效优化. 计算机与数字工程. 2023(11): 2475-2482+2489 .
    7. 陈雨洁,马彩虹. 基于联盟博弈的D2D网络资源分配算法研究. 电子技术应用. 2022(02): 51-54+59 .
    8. 陈慧,张铭宇,李兴旺,孙江峰,李美玲. I/Q失衡影响下无人机多向全双工中继NOMA传输系统性能分析. 电子与信息学报. 2022(03): 987-995 . 本站查看
    9. 王茜竹,胡洪瑞,徐勇军,张海波,周继华,陈莉. 基于能量收集的UAV-D2D网络资源分配算法. 电子与信息学报. 2022(03): 976-986 . 本站查看
    10. 吴官翰,贾维敏,赵建伟,高飞飞,姚敏立. 基于多智能体强化学习的混合博弈模式下多无人机辅助通信系统设计. 电子与信息学报. 2022(03): 940-950 . 本站查看
    11. 徐勇军,徐然,周继华,万杨亮,黄崇文,刘伯红. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法. 电子与信息学报. 2022(07): 2253-2263 . 本站查看
    12. 刘期烈,辛雅楠,高俊鹏,周继华,黄东,赵涛. 可重构智能表面辅助的非正交多址接入网络鲁棒能量效率资源分配算法. 电子与信息学报. 2022(07): 2332-2341 . 本站查看
    13. 徐勇军,高正念,王茜竹,周继华,黄东. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法. 电子与信息学报. 2022(07): 2317-2324 . 本站查看
    14. 高俊鹏,周继华,赵涛,徐勇军,赵瑞莉. 基于硬件损伤的智能反射面辅助安全通信系统能效优化算法. 电子与信息学报. 2022(07): 2349-2357 . 本站查看
    15. 徐勇军,杨蒙,周继华,陈前斌. 基于数能同传的D2D网络鲁棒资源分配算法. 中国科学:信息科学. 2022(10): 1883-1899 .
    16. 徐勇军,杨浩克,李国军,陈前斌. 多标签无线供电反向散射通信网络能效优化算法. 电子与信息学报. 2022(10): 3492-3498 . 本站查看

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1452) PDF downloads(462) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return