Advanced Search
Volume 38 Issue 10
Oct.  2016
Turn off MathJax
Article Contents
WANG Feng, SUN Guiling, ZHANG Jianping, HE Jingfei. Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2538-2545. doi: 10.11999/JEIT151422
Citation: WANG Feng, SUN Guiling, ZHANG Jianping, HE Jingfei. Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2538-2545. doi: 10.11999/JEIT151422

Acceleration Forward-backward Pursuit Algorithm Based on Compressed Sensing

doi: 10.11999/JEIT151422
Funds:

The National Natural Science Foundation of China (61171140), The Doctoral Program of Higher Education (20130031110032)

  • Received Date: 2015-12-14
  • Rev Recd Date: 2016-05-05
  • Publish Date: 2016-10-19
  • The Forward-Backward Pursuit (FBP) algorithm, a novel two stage greedy approach, receives wide attention due to the high reconstruction accuracy and the feature without prior information of the sparsity. However, FBP has to run more time to get a higher precision. To alleviate this drawback, this paper proposes the Acceleration Forward-Backward Pursuit (AFBP) algorithm based on Compressed Sensing (CS). In order to reduce the number of iterations, the algorithm exploits the information available in the support estimate to add the deleted atoms again. The run time of AFBP is sharply shorter than that of FBP, while the precision of AFBP is not lower than FBP. The efficacy of the proposed scheme is demonstrated by simulations using random sparse signals with different nonzero coefficient distributions and a sparse image.
  • loading
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289-1306. doi: 10.1109/TIT.2006.871582.
    CANDS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083.
    李鹏,王建新,曹建农. 无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案[J]. 电子与信息学报, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219.
    LI Peng, WANG Jianxin, and CAO Jiannong. Abnormal event detection scheme based on compressive sensing and GM (1,1) in wireless sensor networks[J]. Journal of Electronics Information Technology, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219.
    蒋明峰, 刘渊, 徐文龙, 等. 基于全变分扩展方法的压缩感知磁共振成像算法研究[J]. 电子与信息学报, 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179.
    JIANG Mingfeng, LIU Yuan, XU Wenlong, et al. The study of compressed sensing MR image reconstruction algorithm based on the extension of total variation method[J]. Journal of Electronics Information Technology, 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179.
    QU X, HOU Y, FAN L, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. doi: 10.1016/j.media.2013.09.007.
    MALLAT S G and ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1994, 41(12): 3397-3415. doi: 10.1109/78.258082.
    TROPP J and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. doi: 10.1109/ TIT.2011.2173241.
    DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006.
    NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. doi: 10.1016/j.acha.2008.07.002.
    DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. 42nd IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008: 581-587. doi: 10.1109/ACSSC.2008.5074472.
    CHATTERJEE S, SUNDMAN D, and SKOGLUND M. Look ahead orthogonal matching pursuit[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 4024-4027. doi: 10.1109/ICASSP.2011.5947235.
    KARAHANOGLU N B and ERDOGAN H. Compressed sensing signal recovery via forward-backward pursuit[J]. Digital Signal Processing, 2013, 23(5): 1539-1548. doi: 10.1016/j.dsp.2013.05.007.
    AMBAT S K and HARI K V S. An iterative framework for sparse signal reconstruction algorithms[J]. Signal Processing, 2015, 108: 351-364. doi: 10.1016/j.sigpro.2014.09.023.
    AMBAT S K, CHATTERJEE S, and HARI K V S. Progressive fusion of reconstruction algorithms for low latency applications in compressed sensing[J]. Signal Processing, 2014, 97(7): 146-151. doi: 10.1016/j.sigpro.2013. 10.019.
    AMBAT S K, CHATTERJEE S, and HARI K V S. A committee machine approach for compressed sensing signal reconstruction[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1705-1717. doi: 10.1109/TSP.2014.2303941.
    DEEPA K G, AMBAT S K, and HARI K V S. Modified greedy pursuits for improving sparse recovery[C]. Twentieth IEEE National Conference on Communications (NCC), Kanpur, 2014: 1-5. doi: 10.1109/NCC.2014.6811370.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1627) PDF downloads(529) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return