Advanced Search
Volume 38 Issue 9
Sep.  2016
Turn off MathJax
Article Contents
MU Liwei, LIU Xingcheng, ZHANG Han. New Ensemble of Time-invariant LDPC Convolutional Codes with High Performance[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2274-2279. doi: 10.11999/JEIT151376
Citation: MU Liwei, LIU Xingcheng, ZHANG Han. New Ensemble of Time-invariant LDPC Convolutional Codes with High Performance[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2274-2279. doi: 10.11999/JEIT151376

New Ensemble of Time-invariant LDPC Convolutional Codes with High Performance

doi: 10.11999/JEIT151376
Funds:

The National Natural Science Foundation of China (61401164, 61572534, 60141176, 61002012, 61501126), The Natural Science Foundation of Guangdong Province of China (2014A030310308, S2013010016297), The High Education Excellent Young Teacher Program of Guangdong Province (YQ2015046)

  • Received Date: 2015-12-08
  • Rev Recd Date: 2016-05-06
  • Publish Date: 2016-09-19
  • In this paper, a new ensemble of the polynomial matrix of a time-invariant LDPC convolutional code is proposed. Based on the method of deriving time-invariant LDPC convolutional codes from QC (Quasi-Cyclic)- LDPC block codes, the elements over finite fields are used to generate directly the polynomial parity-check matrices of LDPC convolutional codes. A concrete example of using MDS (Maximum-Distance Separable) convolutional codes to derive the polynomial matrices is given. The proposed method ensures the fast encoding property, maximum encoding memory and designed rate. Simulation results show that the proposed LDPC convolutional codes exhibit low error floor and good decoding performance under BP (Belief Propagation) decoding algorithm over AWGN (Additive White Gaussian Noise) channel.
  • loading
  • FELTSTROM A and ZIGANGIROV K. Time-varying periodic convolutional codes with low-density parity-check matrix[J]. IEEE Transactions on Information Theory, 1999, 45(6): 2181-2191.
    BOCHAROVA I, KUDRYASHOV B, and JOHANNESSON R. Searching for binary and nonbinary block and convolutional LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(1): 163-183.
    ZHAO Yue and LAU F. Implementation of decoders for LDPC block codes and LDPC convolutional codes based on GPUs[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 25(3): 663-672.
    ZHOU Hua and GOERTZ N. Recoverability of variable nodes in periodically punctured LDPC convolutional code[J]. IEEE Communications Letters, 2015, 19(4): 521-524.
    BALDI M, CANCELLIERI G, and CHIARALUCE F. Array convolutional low-density parity-check codes[J]. IEEE Communications Letters, 2014, 18(2): 336-339.
    GIOULEKAS F, PETROU C, VGENIS A, et al. On the construction of LDPC convolutional code ensembles based on permuted circulant unit matrices[C]. IEEE International Conference on Electronics, Circuits and Systems, Marseille, 2014: 407-410.
    JUNHO C and SCHMALEN L. Construction of protographs for large-girth structured LDPC convolutional codes[C]. IEEE International Conference on Communications, London, 2015: 4412-4417.
    SRIDHARAN A and COSTELLO D. A new construction for low density parity check convolutional codes[C]. Proceedings of the IEEE Information Theory Workshop, Bangalore, India, 2002: 212.
    ZHOU Hua and GOERTZ N. Girth analysis of polynomial- based time-invariant LDPC convolutional codes[C]. International Conference on Systems, Signals and Image Processing, Vienna, 2012: 104-108.
    TANNER R, SRIDHARA D, SRIDHARAN A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Transactions on Information Theory, 2004, 50(12): 2966-2984.
    ESMAEILI M and GHOLAMI M. Geometrically-structured maximum-girth LDPC block and convolutional codes[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(6): 831-845.
    PUSANE A, SMARANDACHE R, VONTOBEL P, et al. Deriving good LDPC convolutional codes from LDPC block codes[J]. IEEE Transactions on Information Theory, 16(6): 897-900.
    MU Liwei, LIU Xingcheng, and LIANG Chulong. Construction of binary LDPC convolutional codes based on finite fields[J]. IEEE Communications Letters, 2012, 16(6): 897-900.
    CHEN Chao, BAI Baoming, and WANG Xingmei. Construction of quasi-cyclic LDPC codes based on a two-dimensional MDS code[J]. IEEE Communications Letters, 2010, 14(5): 447-449.
    JUSTESEN J. An algebraic construction of rate 1/v convolutional codes[J]. IEEE Transactions on Information Theory, 1975, 21(5): 577-580.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1302) PDF downloads(336) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return