Advanced Search
Volume 38 Issue 9
Sep.  2016
Turn off MathJax
Article Contents
Lü Qian, SU Tao. ISAR Imaging of Targets with Complex Motion Based on the Modified Fast Bilinear Parameter Estimation[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2301-2308. doi: 10.11999/JEIT151359
Citation: Lü Qian, SU Tao. ISAR Imaging of Targets with Complex Motion Based on the Modified Fast Bilinear Parameter Estimation[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2301-2308. doi: 10.11999/JEIT151359

ISAR Imaging of Targets with Complex Motion Based on the Modified Fast Bilinear Parameter Estimation

doi: 10.11999/JEIT151359
Funds:

The National Natural Science Foundation of China (61271024, 61201283), Program for New Century Excellent Talents in University (NCET-09-0630)

  • Received Date: 2015-12-03
  • Rev Recd Date: 2016-05-04
  • Publish Date: 2016-09-19
  • In view of image defocus caused by Doppler frequency shift in ISAR imaging of targets with complex motion, this paper characterizes the azimuth echoes as Cubic Phase Signal (CPS) and proposes an ISAR imaging algorithm for targets with complex motion based on the modified fast bilinear parameter estimation. This algorithm can achieve parameter estimation of CPS and ISAR imaging quickly by employing the cubic phase bilinear function, NonUniform Fast Fourier Transform (NUFFT), scale transform based on Chirp-z transform and Fast Fourier Transform (FFT). The computational cost is low due to the NUFFT and FFT in implementation procedure, and bilinearity guarantees a high anti-noise performance and a good suppression on cross-terms. The theoretical analysis and simulation results demonstrate the effectiveness of the proposed ISAR imaging algorithm.
  • loading
  • BERIZZI F, MESE E D, DIANI M, et al. High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: modeling and performance analysis[J]. IEEE Transactions on Image Processing, 2001, 10(12): 1880-1890. doi: 10.1109/83.974573.
    XING Mengdao, WU R, LI Yachao, et al. New ISAR imaging algorithm based on modified Wigner-Ville distribution[J]. IET Radar, Sonar Navigation, 2009, 3(1): 70-80. doi: 10. 1049/iet-rsn:20080003.
    ZHENG Jibin, SU Tao, ZHU Wentao, et al. ISAR imaging of targets with complex motions based on the keystone time-chirp rate distribution[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1275-1279. doi: 10.1109/LGRS. 2013.2291992.
    WU Liang, WEI Xizhang, YANG Degui, et al. ISAR imaging of targets with complex motion based on discrete chirp fourier transform for cubic chirps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4201-4212. doi: 10.1109/TGRS.2012.2189220.
    WANG Yong and ZHAO Bin. Inverse synthetic aperture radar imaging of nonuniformly rotating target based on the parameters estimation of multicomponent quadratic frequency-modulated signals[J]. IEEE Sensors Journal, 2015, 15(7): 4053-4061. doi: 10.1109/JSEN.2015.2409884.
    ZHENG Jibin, SU Tao, ZHU Wentao, et al. ISAR imaging of nonuniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4727-4740. doi: 10.1109/TGRS.2015.2408350.
    WANG Yong. Inverse synthetic aperture radar imaging of manoeuvring target based on range-instantaneous-Doppler and range-instantaneous-chirp-rate algorithms[J]. IET Radar, Sonar Navigation, 2012, 6(9): 921-928. doi: 10.1049/iet- rsn.2012.0091.
    ZHENG Jibin, SU Tao, ZHANG Long, et al. ISAR imaging of targets with complex motion based on the chirp rate- quadratic chirp rate distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7276-7289. doi: 10.1109/TGRS.2014.2310474.
    LV Xiaolei, BI Guoan, WAN C, et al. Lv,s distribution: principle, implementation, properties, and performance[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3576-3591. doi: 10.1109/TSP.2011.2155651.
    WANG Yong and JIANG Yicheng. Inverse synthetic aperture radar imaging of maneuvering target based on the product generalized cubic phase function[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(5): 958-962. doi: 10.1109/ LGRS.2011.2143387.
    WANG Yong and JIANG Yicheng. ISAR imaging of a ship target using product high-order matched-phase transform[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 658-661. doi: 10.1109/LGRS.2009.2013876.
    LI Yachao, WU R, XING Mengdao, et al. Inverse synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar, Sonar Navigation, 2008, 2(6): 395-403. doi: 10.1049/iet-rsn:20070101.
    LI Yanyan, SU Tao, ZHENG Jibin, et al. ISAR imaging of targets with complex motions based on modified Lvs distribution for cubic phase signal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10): 4775-4784. doi: 10.1109/JSTARS.2015. 2460734.
    BAI Xia, TAO Ran, WANG Zhi-jiao, et al. ISAR imaging of a ship target based on parameter estimation of multicomponent quadratic frequency-modulated signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1418-1429. doi: 10.1109/TGRS.2013.2251348.
    WANG Yong, KANG Jian, and JIANG Yicheng. ISAR imaging of maneuvering target based on the local polynomial wigner distribution and integrated high-order ambiguity function for cubic phase signal model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2971-2991. doi: 10.1109/JSTARS.2014. 2301158.
    WANG Yong, ZHAO Bin, and KANG Jian. Asymptotic statistical performance of local polynomial wigner distribution for the parameters estimation of cubic-phase signal with application in ISAR imaging of ship target[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1087-1098. doi: 10.1109/JSTARS.2014.2355219.
    ZHENG Jibin, SU Tao, LIAO Guisheng, et al. ISAR imaging for fluctuating ships based on a fast bilinear parameter estimation algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3954-3966. doi: 10.1109/JSTARS.2015.2440911.
    田超, 文树梁. 基于非均匀FFT的长时间相参积累算法[J]. 电子与信息学报, 2014, 36(6): 1374-1380. doi: 10.3724/SP.J. 1146.2013.01264.
    TIAN Chao and WEN Shuliang. A long-term coherent integration algorithm based on non-uniform fast Fourier transform[J]. Journal of Electronics Information Technology, 2014, 36(6): 1374-1380. doi: 10.3724/SP.J.1146. 2013.01264.
    LIU Qinghuo and NGUYEN N. An accurate algorithm for non uniform fast Fourier transforms (NUFFT,s)[J]. IEEE Microwave and Guided Wave Letters, 1998, 8(1): 18-20. doi: 10.1109/75.650975.
    Peleg S and Porat B. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase[J] IEEE Transactions on Signal Processing, 1991, 39(3): 749-752. doi: 10.1109/78.80864.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1357) PDF downloads(307) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return