Advanced Search
Volume 38 Issue 9
Sep.  2016
Turn off MathJax
Article Contents
LUO Fulin, HUANG Hong, LIU Jiamin, FENG Hailiang. Feature Extraction of Hyperspectral Image Using Semi-supervised Sparse Manifold Embedding[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2321-2329. doi: 10.11999/JEIT151340
Citation: LUO Fulin, HUANG Hong, LIU Jiamin, FENG Hailiang. Feature Extraction of Hyperspectral Image Using Semi-supervised Sparse Manifold Embedding[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2321-2329. doi: 10.11999/JEIT151340

Feature Extraction of Hyperspectral Image Using Semi-supervised Sparse Manifold Embedding

doi: 10.11999/JEIT151340
Funds:

The Chongqing Postgraduates Innovation Project (CYB15052), The National Natural Science Foundation of China (41371338), The Basic and Advanced Research Program of Chongqing (cstc2013jcyjA40005), The Fundamental Research Funds for the Central Universities (106112013CDJZR125501, 1061120131204)

  • Received Date: 2015-11-23
  • Rev Recd Date: 2016-03-18
  • Publish Date: 2016-09-19
  • Hyperspectral image contains the properties of much bands and high redundancy, and the research of hyperspectral image classification focuses on feature extraction. To overcome this problem, a Semi-Supervised Sparse Manifold Embedding (S3ME) algorithm is proposed in this paper. The S3ME method makes full use of labeled and unlabeled samples to adaptively reveal the similarity relationship between data with the sparse representation of tangent space. It constructs a semi-supervised similarity graph via the sparse coefficients and enhances the weight between labeled samples from the same class. In a low-dimensional embedding space, S3ME preserves the similarity of graph to minimize the sum of the weighted distance. Then, it obtains a projection matrix for feature extraction. S3ME not only reveals the sparse manifold structure of data but also enhances the compactness of the same class data, which can effectively extract the discriminating feature and improve the classification performance. The overall classification accuracies of the proposed S3ME method respectively reach 84.62% and 88.07% on the PaviaU and Salinas hyperspectral data sets, and the classification performance of land cover is improved compared with the traditional feature extraction methods.
  • loading
  • CHANG Y L, LIU J N, HAN C C, et al. Hyperspectral image classification using nearest feature line embedding approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 278-287. doi: 10.1109/TGRS.2013.2238635.
    XUE Z H, DU P J, LI J, et al. Simultaneous sparse graph embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 6114-6133. doi: 10.1109/TGRS.2015.2432059.
    李志敏, 张杰, 黄鸿, 等. 面向高光谱图像分类的半监督Laplace鉴别嵌入[J]. 电子与信息学报, 2015, 37(4): 995-1001. doi: 10.11999/JEIT140600.
    LI Zhimin, ZHANG Jie, HUANG Hong, et al. Semi- supervised Laplace discriminant embedding for hyperspectral image classification[J]. Journal of Electronics Information Technology, 2015, 37(4): 995-1001. doi: 10.11999/ JEIT140600.
    宋相法, 焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类[J]. 电子与信息学报, 2012, 34(2): 268-272. doi: 10.3724/SP.J.1146.2011.00540.
    SONG Xiangfa and JIAO Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral information[J]. Journal of Electronics Information Technology, 2012, 34(2): 268-272. doi: 10.3724/SP.J.1146.2011.00540.
    FENG Z X, YANG S Y, WANG S G, et al. Discriminative spectral-spatial margin-based semi-supervised dimensionality reduction of hyperspectral data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 224-228. doi: 10.1109/ LGRS.2014.2327224.
    ROWEIS S T and SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. doi: 10.1126/science.290.5500.2323.
    BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. doi: 10.1162/ 089976603321780317.
    HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]. IEEE International Conference on Computer Vision, Beijing, 2005: 1208-1213. doi: 10.1109/ICCV.2005. 167.
    HE X F and NIYOGI P. Locality preserving projections[C]. Advances in Neural Information Processing Systems, Whistler, B. C., Canada, 2003: 153-160.
    YAN S C, XU D, ZHANG B Y, et al. Graph embedding and extensions: A general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2007, 29(1): 40-51. doi: 10.1109/CVPR.2005. 170.
    SHAO Z and ZHANG L. Sparse dimensionality reduction of hyperspectral image based on semi-supervised local Fisher discriminant analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 31: 122-129. doi: 10.1016/j.jag.2014.03.015.CHEN X B, CAI Y F, CHEN
    CHEN X B, CAI Y F, CHEN L, et al. Discriminant feature extraction for image recognition using complete robust maximum margin criterion[J]. Machine Vision and Applications, 2015, 26(7): 857-870. doi: 10.1007/s00138-015- 0709-7.
    BACHMANN C M, AINSWORTH T L, and FUSINA R A. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441-454. doi: 10.1109/TGRS.2004.842292.
    QIAO L S, CHEN S C, and TAN X Y. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1): 331-341. doi: 10.1016/j.patcog. 2009.05.005.
    ELHAMIFAR E and VIDAL R. Sparse manifold clustering and embedding[C]. Advances in Neural Information Processing Systems, Granada, Spain, 2011: 55-63.
    HUANG H and YANG M. Dimensionality reduction of hyperspectral images with sparse discriminant embedding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5160-5169. doi: 10.1109/TGRS.2015.2418203.
    LU G F, JIN Z, and ZOU J. Face recognition using discriminant sparsity neighborhood preserving embedding[J]. Knowledge-Based Systems, 2012, 31(7): 119-127. doi: 10.1016/j.knosys.2012.02.014.
    ZANG F and ZHANG J S. Discriminative learning by sparse representation for classification[J]. Neurocomputing, 2011, 74: 2176-2183. doi: 10.1016/j.neucom.2011.02.012.
    SONG Y Q, NIE F P, ZHANG C S, et al. A unified framework for semi-supervised dimensionality reduction[J]. Pattern Recognition, 2008, 41(9): 2789-2799. doi: 10.1016/j. patcog.2008.01.001.
    SONG Y Q, NIE F P, and ZHANG C S. Semi-supervised sub-manifold discriminant analysis[J]. Pattern Recognition Letters, 2008, 29(13): 1806-1813. doi: 10.1016/j.patrec.2008. 05.024.
    ZHAO M B, LI B, WU Z, et al. Image classification via least square semi-supervised discriminant analysis with flexible kernel regression for out-of-sample extension[J]. Neurocomputing, 2015(153): 96-107. doi: 10.1016/j.neucom.2014.11.048.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1423) PDF downloads(639) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return