Advanced Search
Volume 38 Issue 8
Sep.  2016
Turn off MathJax
Article Contents
ZHANG Shengmiao, HE Zishu, LI Jun, ZHAO Xiang. A Robust Colored-loading Factor Optimization Approach for KA-STAP[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1942-1949. doi: 10.11999/JEIT151335
Citation: ZHANG Shengmiao, HE Zishu, LI Jun, ZHAO Xiang. A Robust Colored-loading Factor Optimization Approach for KA-STAP[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1942-1949. doi: 10.11999/JEIT151335

A Robust Colored-loading Factor Optimization Approach for KA-STAP

doi: 10.11999/JEIT151335
Funds:

The National Natural Science Foundation of China (61371184, 61301262, 61401062)

  • Received Date: 2015-11-26
  • Rev Recd Date: 2016-03-08
  • Publish Date: 2016-08-19
  • In colored-loading Knowledge Aided STAP (KA-STAP) techniques, the colored-loading factor should be determined according to the performance of the a priori information. The existing Pre-Whitening (PW) colored-loading factor optimization method can not evaluate the accuracy degree of the a priori information of the Cell Under Test (CUT), which makes it not robust to the situation where a priori information for each range bin is different. In this paper, a colored-loading factor optimization method, CUT information involved PW (CPW), is proposed to improve the performance of PW method. In CPW, partial training samples are utilized to evaluate the pre-whitening ability of the colored-loading matrix of CUT. At the same time, non-uniqueness problem of the optimization result of PW is also solved. Simulations are conducted to discuss the performance of CPW under different sample support conditions and different a priori information performance situations. Simulation results demonstrate the effectiveness and robustness of the proposed CPW approach.
  • loading
  • GUERCI J R Space-time adaptive processing for radar[R]. Artech House, 2002.
    马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002.
    MA Zeqiang, WANG Xiqin, LIU Yimin, et al. An Overview on Sparse Recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002.
    WARD J. Space-time adaptive processing for airborne radar.[R] Report of Lincoln Laboratory, Lexington, MA, USA, 1998.
    GUERCI J R and BARANOSKI E J. Knowledge-aided adaptive radar at DARPA: an overview[J]. IEEE Signal Processing Magazine, 2006, 23(1): 41-50. doi: 10.1109/ MSP.2006. 1593336.
    范西昆, 曲毅. 知识辅助机载雷达杂波抑制方法研究进展[J]. 电子学报, 2012, 40(6): 1199-1206. doi: 10.3969/j.issn.0372- 2112.2012.06.022.
    FAN Xikun and QU Yi. An overview of knowledge-aided clutter mitigation methods for airborne radar[J]. Acta Electronica Sinica, 2012, 40(6): 1199-1206. doi: 10.3969/j.issn. 0372-2112.2012.06.022.
    方明, 刘宏伟, 戴奉周, 等. 基于环境动态感知的空时自适应处理[J]. 电子与信息学报, 2015, 37(8): 1786-1792. doi: 10.11999/JEIT141505.
    FANG Ming, LIU Hongwei, DAI Fengzhou, et al. Space-time adaptive processing via dynamic environment sensing[J]. Journal of Electronics Information Technology, 2015, 37(8): 1786-1792. doi: 10.11999/JEIT141505.
    WANG Pu, LI Hongbin, WANG Zhe, et al. Knowledge-aided parametric adaptive matched filter with automatic combining for covariance estimation[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4713-4722. doi: 10.1109/ ICASSP.2014.6854769.
    郭佳佳, 廖桂生, 杨志伟, 等. 利用广义内积值迭代加权的空时协方差矩阵估计方法[J]. 电子与信息学报, 2014, 36(2): 422-427. doi: 10.3724/SP.J.1146.2013.00426.
    GUO Jiajia, LIAO Guisheng, YANG Zhiwei, et al. Iterative weighted covariance matrix estimation method for STAP based on generalized inner products[J]. Journal of Electronics Information Technology, 2014, 36(2): 422-427. doi: 10.3724 /SP.J.1146.2013.00426.
    吴亿锋, 王彤, 吴建新, 等. 基于道路信息的知识辅助空时自适应处理[J]. 电子与信息学报, 2015, 37(3): 613-618. doi: 10.11999/JEIT140626.
    WU Yifeng, WANG Tong, WU Jianxin, et al. A knowledge aided space time adaptive processing based on road network data[J]. Journal of Electronics Information Technology, 2015, 37(3): 613-618. doi: 10.11999/JEIT140626.
    WU Yifeng, WANG Tong, WU Jianxin, et al. Robust training samples selection algorithm based on spectral similarity for spacetime adaptive processing in heterogeneous interference environments[J]. IET Radar, Sonar Navigation, 2015, 9(7): 778-782. doi: 10.1049/iet-rsn.2014.0285.
    BERGIN J S, TEIXEIRA C M, TECHAU P M, et al. STAP with knowledge-aided data pre-whitening[C]. Proceedings of the IEEE Radar Conference, Philadelphia, PA, USA, 2004: 289-294. doi: 10.1109/NRC.2004.1316437.
    BERGIN J S, TEIXEIRA C M, TECHAU P M, et al. Improved clutter mitigation performance using knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 997-1009. doi: 10.1109/ TAES.2006.248194.
    MELVIN W L and SHOWMAN G A. An approach to knowledge- aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021-1042. doi: 10.1109/TAES.2006.248216.
    STOICA P, LI Jian, ZHU Xumin, et al. On using a priori knowledge in space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2598-2602. doi: 10.1109/TSP.2007.914347.
    TANG Bo, ZHANG Yu, TANG Jun, et al. Close form maximum likelihood covariance matrix estimation under a knowledge-aided constraint[J]. IET Radar, Sonar Navigation, 2013, 7(8): 904-913. doi: 10.1049/iet-rsn.2012. 0309.
    ZHU Xumin, LI Jian, Petre Stoica, et al. Knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1325-1336. doi: 10.1109/ACSSC.2007.4487551.
    ZHU Shengqi, LIAO Guisheng, XU Jingwei, et al. Robust space-time adaptive processing with colored loading using iterative optimization[J]. Digital Signal Processing, 2014, 35: 14-20. doi: 10.1016/j.dsp.2014.08.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1511) PDF downloads(364) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return