Advanced Search
Volume 38 Issue 9
Sep.  2016
Turn off MathJax
Article Contents
LI Zhao, LI Yiwen. Cooperative Cognitive Transmission Scheme Based on Adaptive Multi-dimensional Resource Allocation[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2248-2254. doi: 10.11999/JEIT151286
Citation: LI Zhao, LI Yiwen. Cooperative Cognitive Transmission Scheme Based on Adaptive Multi-dimensional Resource Allocation[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2248-2254. doi: 10.11999/JEIT151286

Cooperative Cognitive Transmission Scheme Based on Adaptive Multi-dimensional Resource Allocation

doi: 10.11999/JEIT151286
Funds:

The National Natural Science Foundation of China (61401354, 61401320, 61501285, 61102057), The 111 Project (B08038)

  • Received Date: 2015-11-17
  • Rev Recd Date: 2016-06-13
  • Publish Date: 2016-09-19
  • A transmission mechanism based on the joint management of time, frequency and space domain resources is proposed in the Cooperative Cognitive Radio Network (CCRN), with which the cooperative cognitive users can obtain proper reward under the premise of improving the primary users transmission. The proposed scheme employs multi-antenna cognitive user as a relay. Via adaptive time-slot and bandwidth allocation, bottleneck in the two-hop transmission can be eliminated. Furthermore, a relay selection algorithm taking fairness into account is given for the situation where multiple cooperative cognitive users exist. On one hand, the relay selection utilizes proportional fair to achieve inter-cognitive-user fairness. On the other hand, proper reward is determined by adjusting the incentive factor. Simulation results show that the proposed mechanism can improve the data rate of both primary and cognitive systems, and afford fair reward to the cognitive relays.
  • loading
  • MITOLA J and MAGUIRE G Q J. Cognitive radios: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18. doi: 10.1109/98.788210.
    BHUTE Y and RAUT A R. A survey on relay selection strategies in cooperative wireless network for capacity enhancement[J]. International Journal of Computer Applications, 2013, 65(25): 12-17.
    CHEN X, CHEN H, and MENG W. Cooperative communications for cognitive radio networks from theory to applications[J]. IEEE Communications Surveys Tutorials, 2014, 16(3): 1180-1192. doi: 10.1109/SURV.2014. 021414.00066.
    FENG X, WANG H, and WANG X. A game approach for cooperative spectrum sharing in cognitive radio networks[J]. Wireless Communications and Mobile Computing, 2015, 15(3): 538-551. doi: 10.1002/wcm.2364.
    JING T, ZHU S, LI H, et al. Cooperative relay selection in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 1872-1881. doi: 10.1109/INFCOM. 2013.6566758.
    SU W, MATYJAS J D, and BATALAMA S. Active cooperation between primary users and cognitive radio users in cognitive ad-hoc networks[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas, USA, 2010: 3174-3177. doi: 10.1109/ ICASSP.2010.5496070.
    LI W, CHENG X, JING T, et al. Cooperative multi-hop relaying via network formation games in cognitive radio networks[C]. IEEE International Conference on Computer Communications (INFOCOM), Turin, Italy, 2013: 971-979. doi: 10.1109/INFCOM.2013.6566886.
    KIM J, CHOI W, NAM S, et al. An efficient prewhitening scheme for MIMO cognitive radio systems[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1934-1939. doi: 10.1109/TVT.2013.2290039.
    HUA S, LIU H, ZHUO X, et al. Exploiting multiple antennas in cooperative cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3318-3330. doi: 10.1109/TVT.2013.2297438.
    QIAN L P, WU Y, and CHEN Q. Transmit power minimization for outage-constrained relay selection over Rayleigh-fading channels[J]. IEEE Communications Letters, 2014, 18(8): 1383-1386. doi: 10.1109/LCOMM.2014.2332163.
    ZHONG C, SURAWEERA H A, ZHENG G, et al. Wireless information and power transfer with full duplex relaying[J]. IEEE Transactions on Communications, 2014, 62(10): 3447-3461. doi: 10.1109/TCOMM.2014.2357423.
    NAJAFI M, ARDEBILIPOUR M, SOLEIMANI-NASAB E, et al. Multi-hop cooperative communication technique for cognitive DF and AF relay networks[J]. Wireless Personal Communications, 2015, 83(4): 3209-3221. doi: 10.1007/ s11277-015-2590-0.
    JALALI A, PADOVANI R, and PANKAJ R. Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system[C]. IEEE Vehicular Technology Conference (VTC), Tokyo, Japan, 2000: 1854-1858. doi: 10.1109/VETECS.2000.851593.
    SIGDEL S and KRZYMIEN W A. Simplified fair scheduling and antenna selection algorithms for multiuser MIMO orthogonal space-division multiplexing downlink[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1329-1344. doi: 10.1109/TVT.2008.925002.
    GAST S Matthew. 802.11ac: A Survival Guide[M]. Sebastopol: OReilly Media Inc, 2013: 93-94.
    GHOSH A, RATASUK R, MONDAL B, et al. LTE-Advanced: next-generation wireless broadband technology[J]. IEEE Communications Magazine, 2010, 17(3): 10-22. doi: 10.1109/ MWC.2010.5490974.
    SOUIHLI O and OHTSUKI T. Joint feedback and scheduling scheme for service-differentiated multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 528-533. doi: 10.1109/TWC.2010.02.090212.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1206) PDF downloads(313) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return