Advanced Search
Volume 38 Issue 8
Sep.  2016
Turn off MathJax
Article Contents
LIU Bin, GAO Qiang. Moment Invariants Based on Two Dimensional Non-separable Wavelet Transform[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2085-2090. doi: 10.11999/JEIT151218
Citation: LIU Bin, GAO Qiang. Moment Invariants Based on Two Dimensional Non-separable Wavelet Transform[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2085-2090. doi: 10.11999/JEIT151218

Moment Invariants Based on Two Dimensional Non-separable Wavelet Transform

doi: 10.11999/JEIT151218
Funds:

The National Natural Science Foundation of China (61471160), The Key Project of the Natural Science of Hubei Province (2012FFA053)

  • Received Date: 2015-11-03
  • Rev Recd Date: 2016-05-03
  • Publish Date: 2016-08-19
  • Searching for wavelet invariants is a key issue in multiresolution analysis. On the other hand,the method of moment invariants is fully developed both in the theory and the practice. A kind of wavelet moment invariants are given based on the image invariant moments and wavelet appr-oximation coefficients from the limited number of scales of the image. A fairy complete result on theory and experiment is obtained. At the same time, some problems of the theory and method are pointed out in the practical application.Finally, the application relationship between multi-scale analysis and invariant moment is briefly described.
  • loading
  • 李骏扬, 金立左, 费树岷, 等. 基于多尺度特征表示的城市道路检测[J]. 电子与信息学报, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    MALLAT S G. A Theory for multi-resolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 1(7): 674-693.
    MALLAT S G. Multiresolution approximations and wavelet orthonormal bases of L2(R)[J]. Transactions of the American Mathematical Society, 1989, 315(1): 69-87.
    DAUBECHIES I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure And Applied Mathematics, 1988, 41(7): 909-996.
    PRASHAN P and MALIN P. Image matching using moment invariants[J]. Neurocomputing, 2014, 137: 65-70. doi: 10.1016/j.neucom.2013.02.058.
    HU M K. Visual pattern recognition by moment invariants[J]. IEEE Transactions on Information Theory, 1962, 8(2): 179-182.
    谢生龙, 王夏黎, 董春雨, 等. 基于不变矩理论线矩法图像特征的提取[J]. 计算机技术与发展, 2014, 24(11): 139-143. doi: 10.3969/j.issn.1673-629X.2014.11.035.
    XIE Shenglong, WANG Xiali, DONG Chunyu, et al. Extraction of figure features based on line moment method of moment invariant theory[J]. Computer Technology and Development, 2014, 24(11): 139-143. doi: 10.3969/j.issn.1673- 629X.2014.11.035.
    轩建平, 郑锋. 基于Coiflet的二维小波有限元构造与应用[J]. 华中科技大学学报(自然科学版), 2014, 42(5): 21-24. doi: 10.13245/j.hust.140505.
    XUAN Jianping and ZHENG Feng. Construction and application of two-dimentional wavelet finite element based on Coiflet[J]. Huazhong University of Science Technology, 2014, 42(5): 21-24. doi: 10.13245/j.hust.140505.
    HUR Y, PARK H, and ZHENG Fang. Multi-D wavelet filter bank design using quillen-suslin theorem for laurent polynomials[J]. IEEE Transactions on Signal Processing, 2014, 62(20): 5348-5358.doi: 10.1109/TSP.2014.2347263.
    HUAE Y. Construction of compactly supported nonseparable orthogonal wavelet with dilation 4[J]. Advanced Materials Research, 2014, 1061(1): 1064-1069.
    金琪, 戴汝为. 基于矩表示的小波不变量[J]. 模式识别与人工智能, 1995, 8(3): 179-187.
    JIN Qi and DAI Ruwei. Wavelet invariants based on moment presentation[J]. Pattern Recognition and Artificial Intelligence, 1995, 8(3): 179-187.
    AYACHE A. Some methods for constructing non-separable, orthonormal, compactly supported wavelet bases[J]. Letter to the Editor In Applied And Computational Harmonic Analysis, 2001, 10(1): 99-111.
    DAUBECHIES I. Ten Lectures on Wavelets [M]. Vermont: Capital City Press, 1992: 299-300.
    徐应祥, 关履泰. 具有消失矩的新二元正交小波[J]. 云南大学学报(自然科学版), 2010, 32(4): 385-391.
    XU Yingxiang and GUAN Ltai. New bivariate orthogonal wavelets with vanishing moments[J]. Journal of Yunnan University, 2010, 32(4): 385-391.
    WONG Y R. Scene matching with invariant moments[J]. Computer Graphics and Image Processing, 1978, 8(1): 16-24.
    潘泉, 程咏梅, 杜亚娟, 等. 离散不变矩算法及其在目标识别中的应用[J]. 电子与信息学报, 2001, 23(1): 30-36.
    PAN Quan, CHENG Yongmei, DU Yajuan, et al. Discrete moment invariant algorithm and its application on target recognition[J]. Journal of Electronics Information Technology, 2001, 23(1): 30-36.
    沈会良, 李志能. 基于矩和小波变换的数字、字母字符识别研究[J]. 中国图象图形学报, 2000, 5A(3): 249-252. doi: 10.3969 /j.issn.1006-8961.2000.03.015.
    SHEN Huiliang and LI Zhineng. A study of number and letter character recognition based on moments and wavelet transform[J]. Journal of Image and Graphics, 2000, 5A(3): 249-252. doi: 10.3969/j.issn.1006-8961.2000.03.015.
    毛贤光, 李云欣, 李罕, 等. 基于不变矩和小波分析的指横纹匹配新算法[J]. 计算机工程与应用, 2015, 51(20): 172-177. doi: 10.3778/j.issn.1002-8331.1310-0109.
    MAO Xianguang, LI Yunxin, LI Han, et al. New matching algorithm of knuckleprint based on moment invariants and wavelet multi-resolution analysis[J].Computer Engineering and Applications, 2015, 51(20): 172-177. doi: 10.3778/j.issn. 1002-8331.1310-0109.
    丁晓青. 汉字识别研究的回顾[J]. 电子学报, 2002, 9(9): 1364-1368. doi: 10.3321/j.issn:0372-2112.2002.09.029.
    DING Xiaoqing. Chinese character recognition:a review[J]. Acta Electronica Sinica, 2002, 9(9): 1364-1368. doi: 10.3321/ j.issn:0372-2112.2002.09.029.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1205) PDF downloads(394) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return