Advanced Search
Volume 38 Issue 8
Sep.  2016
Turn off MathJax
Article Contents
LIAN Qiusheng, ZHAO Xiaorui, SHI Baoshun, CHEN Shuzhen. Phase Retrieval Algorithm Based on Cartoon-texture Model[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1991-1998. doi: 10.11999/JEIT151156
Citation: LIAN Qiusheng, ZHAO Xiaorui, SHI Baoshun, CHEN Shuzhen. Phase Retrieval Algorithm Based on Cartoon-texture Model[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1991-1998. doi: 10.11999/JEIT151156

Phase Retrieval Algorithm Based on Cartoon-texture Model

doi: 10.11999/JEIT151156
Funds:

The National Natural Science Foundation of China (61471313), The Natural Science Foundation of Hebei Province (F2014203076)

  • Received Date: 2015-10-16
  • Rev Recd Date: 2016-02-25
  • Publish Date: 2016-08-19
  • Phase retrieval is an issue that tries to recover an image from its Fourier magnitude measurements. Since the Fourier magnitude measurements contain less information, the traditional phase retrieval algorithms can not reconstruct the image efficiently under the scenario that the oversampling ratio is relatively low. Therefore, how to use the suitable image priors to improve the reconstruction quality of the image is the key issue. In this paper, the cartoon-texture model is utilized for phase retrieval algorithm. Two sparse representation methods including both Total Variation (TV) and Dual-Tree Complex Wavelet Transform (DTCWT) are exploited to decompose the image into two parts, namely the cartoon component and the texture component. Moreover, Alternating Direction Method of Multipliers (ADMM) is exploited to solve the corresponding problem. The experimental results show that the proposed algorithm can effectively improve the quality of image reconstruction.
  • loading
  • SHECHTMAN Y, ELDAR Y C, COHEN O, et al. Phase retrieval with application to optical imaging: a contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 87-109. doi: 10.1109/MSP.2014.2352673.
    WANG Xiaogang, CHEN Wen, and CHEN Xudong. Optical encryption and authentication based on phase retrieval and sparsity constraints[J]. IEEE Photonics Journal, 2015, 7(2): 1-10. doi: 10.1109/JPHOT.2015.2412936.
    ELDAR Y C, SIDORENKO P, MIXON D G, et al. Sparse phase retrieval from short-time Fourier measurements[J]. IEEE Signal Processing Letters, 2015, 22(5): 638-642. doi: 10.1109/LSP.2014.2364225.
    戎路, 王大勇, 王云新, 等. 同轴数字全息中的相位恢复算法[J]. 中国激光, 2014, 41(2): 55-64. doi: 10.3788/cj1201441. 0209006.
    RONG Lu, WANG Dayong, WANG Yunxin, et al. Phase retrieval methods in in-line digital holography[J].Chinese Journal of Lasers, 2014, 41(2): 55-64. doi: 10.3788/cj1201441. 0209006.
    MIAO J, SAYRE D, and CHAPMAN H N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects[J]. Journal of the Optical Society of America A, 1998, 15(6): 1662-1669. doi: 10.1364/JOSAA.15.001662.
    GERCHBERG R W and SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-250.
    杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.
    YANG Guozhen and GU Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.
    FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/A0.21. 002758.
    ELSER V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55. doi: 10.1364/JOSAA.20.000040.
    程鸿, 章权兵, 韦穗. 基于整体变分的相位恢复[J]. 中国图象图形学报, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
    CHENG Hong, ZHANG Quanbing, and WEI Sui. Phase retrieval based on total variation[J]. Journal of Image and Graphics, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
    杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复[J]. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203.
    YANG Zhenya and ZHENG Chujun. Phase retrieval of pure phase object based on compressed sensing[J]. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203.
    CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 89-97. doi: 10.1023/ B:JMIV.0000011325.36760.1e.
    SHECHTMAN Y, BECK A, and ELDAR Y C. GESPAR: Efficient phase retrieval of sparse signals[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 928-938. doi: 10.1109/TSP.2013.2297687.
    SCHNITER P and RANGAN S. Compressive phase retrieval via generalized approximate message passing[J]. IEEE Transactions on Signal Processing, 2015, 63(4): 1043-1055. doi: 10.1109/Allerton.2012.6483302.
    KINGSBURY N G. Complex wavelets for shift invariant analysis and filtering of signals[J]. Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253. doi: 10.1006/acha. 2000.0343.
    MEYER Y. Oscillating Patterns in Image Processing and Non-Linear Evolution Equations[M]. Boston: University Lecture Series, American Mathematical Society, 2001: 23-78.
    BAUSCHKE H H, COMBETTES P L, and LUKE D R. Hybrid projection-reflection method for phase retrieval[J]. Journal of the Optical Society of America A, 2003, 20(6): 1025-1034. doi: 10.1364/JOSAA.20.001025.
    CHI J N and ERAMIAN M. Enhancement of textural differences based on morphological component analysis[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2671-2684. doi: 10.1109/TIP.2015.2427514.
    ZHANG Zhengrong, ZHANG Jun, WEI Zhihui, et al. Cartoon-texture composite regularization based non-blind deblurring method for partly-textured blurred images with Poisson noise[J]. Signal Processing, 2015, 116(11): 127-140. doi: 10.1016/j.sigpro.2015.04.020.
    GOLDSTEIN T and OSHER S. The split bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343. doi: 10.1137/080725891.
    DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. doi: 10.1109/18.382009.
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122. doi: 10.1561/2200000016.
    WANG Yilun, YIN Wotao, and ZHANG Yin. A fast algorithm for image deblurring with total variation regularization[R]. CAAM Technical Report TR07-10, Rice University, Houston, 2007.
    GLOWINSKI R. Lectures on Numerical Methods for Non-Linear Variational Problems[M]. Berlin: Bombay Springer-Verlag, 1980: 200-214.
    WANG Z H, BOVIK A C, and SHEIKH H R. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    RODRIGUEZ J A, XU Rui, CHEN Chienchun, et al. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities[J]. Journal of Applied Crystallography, 2013, 46(2): 312-318. doi: 10.1107/ S0021889813002471.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1362) PDF downloads(596) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return