Citation: | LIAN Qiusheng, ZHAO Xiaorui, SHI Baoshun, CHEN Shuzhen. Phase Retrieval Algorithm Based on Cartoon-texture Model[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1991-1998. doi: 10.11999/JEIT151156 |
SHECHTMAN Y, ELDAR Y C, COHEN O, et al. Phase retrieval with application to optical imaging: a contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 87-109. doi: 10.1109/MSP.2014.2352673.
|
WANG Xiaogang, CHEN Wen, and CHEN Xudong. Optical encryption and authentication based on phase retrieval and sparsity constraints[J]. IEEE Photonics Journal, 2015, 7(2): 1-10. doi: 10.1109/JPHOT.2015.2412936.
|
ELDAR Y C, SIDORENKO P, MIXON D G, et al. Sparse phase retrieval from short-time Fourier measurements[J]. IEEE Signal Processing Letters, 2015, 22(5): 638-642. doi: 10.1109/LSP.2014.2364225.
|
戎路, 王大勇, 王云新, 等. 同轴数字全息中的相位恢复算法[J]. 中国激光, 2014, 41(2): 55-64. doi: 10.3788/cj1201441. 0209006.
|
RONG Lu, WANG Dayong, WANG Yunxin, et al. Phase retrieval methods in in-line digital holography[J].Chinese Journal of Lasers, 2014, 41(2): 55-64. doi: 10.3788/cj1201441. 0209006.
|
MIAO J, SAYRE D, and CHAPMAN H N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects[J]. Journal of the Optical Society of America A, 1998, 15(6): 1662-1669. doi: 10.1364/JOSAA.15.001662.
|
GERCHBERG R W and SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-250.
|
杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.
|
YANG Guozhen and GU Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.
|
FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/A0.21. 002758.
|
ELSER V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55. doi: 10.1364/JOSAA.20.000040.
|
程鸿, 章权兵, 韦穗. 基于整体变分的相位恢复[J]. 中国图象图形学报, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
|
CHENG Hong, ZHANG Quanbing, and WEI Sui. Phase retrieval based on total variation[J]. Journal of Image and Graphics, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
|
杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复[J]. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203.
|
YANG Zhenya and ZHENG Chujun. Phase retrieval of pure phase object based on compressed sensing[J]. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203.
|
CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 89-97. doi: 10.1023/ B:JMIV.0000011325.36760.1e.
|
SHECHTMAN Y, BECK A, and ELDAR Y C. GESPAR: Efficient phase retrieval of sparse signals[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 928-938. doi: 10.1109/TSP.2013.2297687.
|
SCHNITER P and RANGAN S. Compressive phase retrieval via generalized approximate message passing[J]. IEEE Transactions on Signal Processing, 2015, 63(4): 1043-1055. doi: 10.1109/Allerton.2012.6483302.
|
KINGSBURY N G. Complex wavelets for shift invariant analysis and filtering of signals[J]. Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253. doi: 10.1006/acha. 2000.0343.
|
MEYER Y. Oscillating Patterns in Image Processing and Non-Linear Evolution Equations[M]. Boston: University Lecture Series, American Mathematical Society, 2001: 23-78.
|
BAUSCHKE H H, COMBETTES P L, and LUKE D R. Hybrid projection-reflection method for phase retrieval[J]. Journal of the Optical Society of America A, 2003, 20(6): 1025-1034. doi: 10.1364/JOSAA.20.001025.
|
CHI J N and ERAMIAN M. Enhancement of textural differences based on morphological component analysis[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2671-2684. doi: 10.1109/TIP.2015.2427514.
|
ZHANG Zhengrong, ZHANG Jun, WEI Zhihui, et al. Cartoon-texture composite regularization based non-blind deblurring method for partly-textured blurred images with Poisson noise[J]. Signal Processing, 2015, 116(11): 127-140. doi: 10.1016/j.sigpro.2015.04.020.
|
GOLDSTEIN T and OSHER S. The split bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343. doi: 10.1137/080725891.
|
DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. doi: 10.1109/18.382009.
|
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122. doi: 10.1561/2200000016.
|
WANG Yilun, YIN Wotao, and ZHANG Yin. A fast algorithm for image deblurring with total variation regularization[R]. CAAM Technical Report TR07-10, Rice University, Houston, 2007.
|
GLOWINSKI R. Lectures on Numerical Methods for Non-Linear Variational Problems[M]. Berlin: Bombay Springer-Verlag, 1980: 200-214.
|
WANG Z H, BOVIK A C, and SHEIKH H R. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
|
RODRIGUEZ J A, XU Rui, CHEN Chienchun, et al. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities[J]. Journal of Applied Crystallography, 2013, 46(2): 312-318. doi: 10.1107/ S0021889813002471.
|