Advanced Search
Volume 38 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
WANG Wei, TANG Weimin, WANG Ben, LEI Shujie . Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056
Citation: WANG Wei, TANG Weimin, WANG Ben, LEI Shujie . Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056

Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing

doi: 10.11999/JEIT151056
Funds:

The National Natural Science Foundation of China (61571148), China Postdoctoral Science Foundation (2014M550182), Heilongjiang Province Postdoctoral Special Foundation (LBH-TZ0410), Harbin Science and Technology Innovation Talents (2013RFXXJ016), China Postdoctoral Special Funding (2015T 80328)

  • Received Date: 2015-09-17
  • Rev Recd Date: 2016-03-18
  • Publish Date: 2016-06-19
  • An effective Sparse Bayesian Learning algorithm exploiting Complex sparse Temporal correlation (CTSBL) is proposed in this paper, which is used to recover sparse complex signal. By exploiting the fact that the real and imaginary components of a complex value share the same sparsity pattern, it can improve the sparsity of the estimated signal. A multitask sparse signal recovery issue is transformed to a block sparse signal recovery issue of a single measurement by taking full advantage of the internal structure information among the multiple measurement vector signals. The experiments show that the proposed algorithm CTSBL achieves better recovery performance compared with the existing Complex MultiTask Bayesian Compressive Sensing (CMTBCS) algorithm and BOMP algorithm.
  • loading
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
    ELAD M. Sparse and Redundant Representations[M]. New York: Springer, 2010: 1094-1097.
    王天云, 于小飞, 陈卫东. 基于稀疏贝叶斯学习的无源雷达高分辨成像[J]. 电子与信息学报, 2015, 37(5): 1023-1030. doi: 10.11999/JEIT140899.
    WANG T Y, YU X F, and CHEN W D. High-resolution imaging of passive radar based on sparse Bayesian learning[J]. Journal of Electronics Information Technology, 2015, 37(5): 1023-1030. doi: 10.11999/JEIT140899.
    孙磊, 王华力, 许广杰. 基于稀疏贝叶斯学习的高效 DOA 估计方法[J]. 电子与信息学报, 2013, 35(5): 1196-1201. doi: 10.3724/SP.J.1146.2012.01429.
    SUN L, WANG H L, and XU G J. Efficient direction-of- arrival estimation via sparse Bayesian learning[J]. Journal of Electronics Information Technology, 2013, 35(5): 1196-1201. doi: 10.3724/SP.J.1146.2012.01429.
    CHEN S and DONOHO D L. Atomic decomposition by basis pursuit[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 33-61. doi: 10.1137/S1064827596304010.
    THEIS F J, JUNG A, PUNTONET C G, et al. Signal recovery from partial information via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 15(2): 419-439.
    TIBSHIRANI R. Regression shrinkage and subset selection with the Lasso[J]. Journal of the Royal Statistical Society, 1996, 58(1): 267-288.
    HUANG J and ZHANG T. The benefit of group sparsity[J]. Annals of Statistics, 2009, 38(4): 1978-2004. doi: 10.1214/09- AOS778.
    YUAN M and LIN Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society, 2006, 68(1): 49-67. doi: 10.1111/j. 1467-9868.2005.00532.x.
    FU Y L, LI H F, ZHANG Q H, et al. Block-sparse recovery via redundant block OMP[J]. Signal Processing, 2014, 97(7): 162-171. doi: 10.1016/j.sigpro.2013.10.030.
    LI B, SHEN Y, LI J, et al. Sensing and measurement dictionaries design for block OMP algorithm[J]. Electronics Letters, 2014, 50(19): 1351-1353. doi : 10.1049/el.2014. 2000.
    ZHANG Z and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
    WANG W, JIA M, and GUO Q. A compressive sensing recovery algorithm based on sparse Bayesian learning for block sparse signal[C]. 2014 International Symposium on Wireless Personal Multimedia Communications, Sydney, 2014: 547-551. doi: 10.1109/WPMC.2014.7014878.
    王峰, 向新, 易克初, 等. 基于隐变量贝叶斯模型的稀疏信号恢复[J]. 电子与信息学报, 2015, 37(1): 97-102. doi: 10.11999/ JEIT140169.
    WANG F, XIANG X, YI K C et al. Sparse signals recovery based on latent variable Bayesian models[J]. Journal of Electronics Information Technology, 2015, 37(1): 97-102. doi: 10.11999/JEIT140169.
    CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of- arrival estimation through Bayesian compressive sensing strategies[J]. IEEE Transactions on Antennas Propagation, 2013, 61(7): 3828-3838. doi : 10.1109/TAP.2013.2256093.
    WU Q, ZHANG Y D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, 2014: 3375-3379. doi: 10.1109/ICASSP.2014. 6854226.
    CAWLEY G C and TALBOT N L C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters[J]. Journal of Machine Learning Research, 2007, 8(4): 841-861.
    ZHANG Z and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with Intra-Block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015. doi: 10.1109/TSP.2013.2241055.
    ZHANG Z and RAO B D. Recovery of block sparse signals using the framework of block sparse Bayesian learning[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 3345-3348. doi: 10.1109/ICASSP.2012.6288632.
    KAY S M. Fundamentals of statistical signal processing: estimation theory[J]. Technometrics, 1995, 37(4): 465-466.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2209) PDF downloads(767) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return