Advanced Search
Volume 38 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
LIAO Miao, ZHAO Yuqian, ZENG Yezhan, HUANG Zhongchao, ZOU Beiji. Liver Segmentation from Abdominal CT Volumes Based on Graph Cuts and Border Marching[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1552-1556. doi: 10.11999/JEIT151005
Citation: LIAO Miao, ZHAO Yuqian, ZENG Yezhan, HUANG Zhongchao, ZOU Beiji. Liver Segmentation from Abdominal CT Volumes Based on Graph Cuts and Border Marching[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1552-1556. doi: 10.11999/JEIT151005

Liver Segmentation from Abdominal CT Volumes Based on Graph Cuts and Border Marching

doi: 10.11999/JEIT151005
Funds:

The National Natural Science Foundation of China (61172184, 61379107, 61402539, 61174210), Program for New Century Excellent Talents in University of Ministry of Education in China (NCET-13-0603), Specialized Research Fund for the Doctoral Program of Higher Education in China (20130162110016), Program for Hunan Province Science and Technology Basic Construction (Grant 20131199), Hunan Provincial Science and Technology Project of China (2015RS4008), Fundamental Research Funds for the Central Universities of Central South University (2014ZZTS053), Hunan Provincial Innovation Foundation for Postgraduate (CX2014B052)

  • Received Date: 2015-09-08
  • Rev Recd Date: 2016-01-22
  • Publish Date: 2016-06-19
  • A novel method for liver segmentation from abdominal CT volumes based on graph cuts and border marching is proposed. First, to exclude complex background and highlight liver region, liver intensity and appearance models are built according to the characteristics of a given CT volume. Then, the intensity and appearance models together with location information from neighbor segmented slice are effectively integrated into graph cuts cost computation to segment the CT volume initially and automatically. Finally, to solve the under-segmentation issue of liver vessel, a boundary compensation method based on border marching is proposed. The proposed method is tested and compared with some other methods on 30 CT volumes from XHCSU14 and SLIVER07 databases. The experimental results show that the proposed method can segment livers integrally and effectively from abdominal CT volumes, with higher accuracy and robustness.
  • loading
  • SELVER M A, KOCAOGLU A, DEMIR G K, et al. Patient oriented and robust automatic liver segmentation for pre-evaluation of liver transplantation[J]. Computers in Biology and Medicine, 2008, 38(7): 765-784. doi: 10.1016/j. compbiomed.2008.04.006.
    LU X Q, WU J S, REN X Y, et al. The study and application of the improved region growing algorithm for liver segmentation[J]. Optik, 2014, 125(9): 2142-2147. doi: 10. 1016/j.ijleo.2013.10.049.
    张小强, 熊博莅, 匡纲要. 一种基于变化检测技术的SAR图像舰船目标鉴别方法[J]. 电子与信息学报, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    韩明, 刘教民, 孟军英, 等. 结合局部能量与改进的符号距离正则项的图像目标分割算法[J]. 电子与信息学报, 2015, 37(9): 2047-2054. doi: 10.11999/JEIT141473.
    HAN Ming, LIU Jiaomin, MENG Junying, et al. Local energy information combined with improved signed distance regularization term for image target segmentation algorithm[J]. Journal of Electronics Information Technology, 2015, 37(9): 2047-2054. doi: 10.11999/ JEIT141473.
    PENG J L, WANG Y, and KONG D X. Liver segmentation with constrained convex variational model[J]. Pattern Recognition Letters, 2014, 43(1): 81-88. doi: 10.1016/j.patrec. 2013.07.010.
    AFIFI A and NAKAGUCHI T. Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains[C]. Medical Image Computing and Computer-Assisted Intervention, Nice, 2012, 7511: 395-403.
    CHEN X, UDUPA J K, BAGCI U, et al. Medical image segmentation by combining graph cuts and oriented active appearance models[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2035-2046. doi: 10.1109/TIP.2012. 2186306.
    HEIMANN T, MEINZER H, and WOLF I. A statistical deformable model for the segmentation of liver CT volumes[C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, 2007: 161-166. doi: 10.1109/ IEMBS.2010.5626470.
    KAINMULLER D, LANGE T, and LAMECKER H. Shape constrained automatic segmentation of the liver based on a heuristic intensity model[C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, 2007: 109-116.
    LIAO Miao, ZHAO Yuqian, LI Xianghua, et al. Automatic segmentation for cell images based on bottleneck detection and ellipse fitting[J]. Neurocomputing, 2015, 173(3): 615-622. doi: 10.1016/j.neucom.2015.08.006.
    HEIMANN T, GINNEKEN B V, STYNER M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1251-1265. doi: 10.1109/TMI.2009.2013851.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1760) PDF downloads(1154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return