Advanced Search
Volume 38 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
DONG Qi, SUN Guangcai, YANG Zemin, ZUO Shaoshan, XING Mengdao. Cartesian Coordinates Factorized Back-projection Algorithm for Spotlight SAR[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1482-1488. doi: 10.11999/JEIT150990
Citation: DONG Qi, SUN Guangcai, YANG Zemin, ZUO Shaoshan, XING Mengdao. Cartesian Coordinates Factorized Back-projection Algorithm for Spotlight SAR[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1482-1488. doi: 10.11999/JEIT150990

Cartesian Coordinates Factorized Back-projection Algorithm for Spotlight SAR

doi: 10.11999/JEIT150990
Funds:

The National Natural Science Foundation of China (61301280, 61301292)

  • Received Date: 2015-09-06
  • Rev Recd Date: 2016-03-07
  • Publish Date: 2016-06-19
  • The Fast Factorized Back-Projection Algorithm (FFBPA) can reconstruct images in low sampling rate in Local Polar Coordinates (LPC). However, massive 2 dimensional image interpolations are required in image fusion from different LPCs. Image fusion is much easier in Cartesian Coordinates (CC), whereas, the Nyquist sampling rate of images in CC is higher, resulting in decline in the efficiency. To solve this problem, a spectrum compressing method is proposed. By compressing in range-time domain and range-frequency domain, the azimuth spectrum is greatly compressed. The image quality of the proposed method is similar to that of Back-Projection Algorithm (BPA) and is superior to that FFBPA. This method can also be used in SAR of nonlinear track. In the end, the validity of this method is proved by spaceborne SAR simulation data of 0.1 m resolution and airborne SAR real data of 0.2 m resolution.
  • loading
  • 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 2-6.
    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005: 2-6.
    Smith A M. A new approach to range-Doppler SAR processing[J]. International Journal of Remote Sensing, 1991, 12(2): 235-251. doi: 10.1080/01431169108929650.
    侯育星, 陈士超, 唐禹, 等. 基于切比雪夫多项式的新形式调频变标合成孔径雷达成像算法[J]. 电子与信息学报, 2014, 36(11): 2646-2651. doi: 10.3724/SP.J.1146.2013.01624.
    HOU Yuxing, CHEN Shichao, TANG Yu, et al. A new form of chirp scaling algorithm based on Chebyshev polynomials synthetic aperture radar imaging[J]. Journal of Electronics Information Technology, 2014, 36(11): 2646-2651. doi: 10.3724/SP.J.1146.2013.01624.
    MUNSON D C Jr, OBRIEN J D, and JENKINS W K. A tomographic formulation of spotlight mode synthetic aperture radar[J]. Proceedings of the IEEE, 1983, 72(8): 917-925. doi: 10.1109/PROC.1983.12698.
    DURAND R, GINOLHAC G, THIRION-LEFEVRE L, et al. Back projection version of subspace detector SAR processors [J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1489-1497. doi: 10.1109/TAES.2011.5751274.
    杨军, 孙光才, 吴玉峰, 等. 基于方位谱分析的斜视TOPS SAR子孔径成像方法[J]. 电子与信息学报, 2014, 36(4): 923-931. doi: 10.3724/SP.J.1146.2013.00673.
    YANG Jun, SUN Guangcai, WU Yufeng, et al. A subaperture imaging algorithm for squit TOPS SAR based on SPECAN technique[J]. Journal of Electronics Information Technology, 2014, 36(4): 923-931. doi: 10.3724/SP.J.1146. 2013.00673.
    YEGULALP A F. Fast back-projection algorithm for synthetic aperture radar[C]. The Record of the 1999 IEEE Radar Conference, Waltham, Massachusetts, 1999, 60-65. doi: 10.1109/NRC.1999.767270.
    ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace Electronic Systems, 2003, 39(3): 760-776. doi: 10.1109/TAES. 2003. 1238734.
    ZHANG Lei, LI Haolin, and QIAO Zhijun. A fast BP algorithm with wavenumber spectrum fusion for high- resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1460-1464. doi: 10.1109/LGRS. 2013.2295326.
    杨泽民, 孙光才, 吴玉峰, 等. 一种新的基于极坐标格式的快速后向投影算法[J]. 电子与信息学报, 2014, 36(3): 537-544. doi: 10.3724/SP.J.1146.2013.00613.
    YANG Zemin, SUN Guangcai, WU Yufeng, et al. A new fast back projection algorithm based on polar format algorithm [J]. Journal of Electronics Information Technology, 2014, 36(3): 537-544. doi: 10.3724/SP.J.1146.2013.00613.
    VU V T, SJOGREN T K, and PETTERSSON M I. SAR imaging in ground plane using fast back-projection for mono- and bistatic cases[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 184-189. doi: 10.1109/RADAR.2012.6212134.
    WANG R, DENG Y K, LOFFELD O, et al. Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithms based on two-dimensional principle of stationary phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3504-3520. doi: 10.1109/ TGRS.2011.2129573.
    LI J, ZHANG S, and CHANG J. Bistatic forward-looking SAR imaging based on two-dimensional principle of stationary phase[J]. 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST), Chengdu, 2012: 1-4. doi: 10.1109/ MMWCST.2012.6238129.
    YANG Zemin, XING Mengdao, ZHANG Lei, et al. A coordinate-transform based FFBP algorithm for high- resolution spotlight SAR imaging[J]. SCIENCE CHINA Information Sciences, 2015, 58(2): 1-11. doi: 10.1007/s11432 -014-5262-x.
    HANSSEN R and BAMLER R. Evaluation of interpolation kernels for SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 318-321. doi: 10.1109/36.739168.
    SELVA J and LOPEZ-SANCHEZ J M. Efficient interpolation of SAR images for coregistration in SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 411-415. doi: 10.1109/LGRS.2007.895961.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1608) PDF downloads(439) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return