| Citation: | SUN Rui, ZHANG Guanghai, GAO Jun. Pedestrian Recognition Method Based on Depth Hierarchical Feature Representation[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1528-1535. doi: 10.11999/JEIT150982 | 
 
	                | DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of IEEE Computer Society Conference on in Computer Vision and Pattern Recognition. San Diego, 2005: 886-893. doi: 10.1109/CVPR. 2005.177. | 
| ARMANFARD N, KOMEILI M, and KABIR E. TED: a texture-edge descriptor for pedestrian detection in video sequences[J]. Pattern Recognition, 2012, 45(3): 983-992. doi:  10.1016/j.patcog.2011.08.010. | 
| YAN Zhiguo, YANG Fang, WANG Jian, et al. Face orientation detection in video stream based on Harr-like feature and LQV classifier for civil video surveillance[C]. IET International Conference on Smart and Sustainable City (ICSSC), Shanghai, 2013: 161-165. doi: 10.1049/cp.2013. 2029. | 
| XIAO Pan, CAI Nian, TANG Bochao, et al. Efficient SIFT descriptor via color quantization[C]. IEEE International Conference on Consumer Electronics, Shenzhen, 2014: 1-3. doi:  10.1109/ICCE-China.2014.7029876. | 
| YANG Jian, XU Wei, LIU Yu, et al. Real-time discrimination of frontal face using integral channel features and Adaboost[C]. IEEE Conference on Software Engineering and Service Science (ICSESS), Beijing, 2014: 360-363. doi: 10. 1109/ICSESS.2014.6933582. | 
| WU Shuqiong and NAGAHASHI H. Parameterized AdaBoost: introducing a parameter to speed up the training of real AdaBoost[J]. IEEE Signal Processing Letters, 2014, 21(6): 687-691.doi:  10.1109/LSP.2014.2313570. | 
| SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. doi: 10.1016/ j.neunet.2014.09.003. | 
| RANZATO M, BOUREAU Y, and LECUN Y. Sparse feature learning for deep belief networks[C]. Proceedings of Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, 2007: 1185-1192. | 
| 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804. | 
| YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep learning: yesterday, today, and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804. | 
| LAW M T, THOME N, and CORD M. Bag-of-Words Image Representation: Key Ideas and Further Insight[M]. Switzerland, Springer International Publishing, 2014: 29-52. | 
| WU Chunpeng, FAN Wei, HE Yuan, et al. Handwritten character recognition by alternately trained relaxation convolutional neural network[C]. International Conference on Frontiers in Handwriting Recognition, Heraklion, 2014: 291-296. doi:  10.1109/ICFHR.2014.56. | 
| SOHN K, JUNG D Y, LEE H, et al. Efficient learning of sparse, distributed, convolutional feature representations for object recognition[C]. 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, 2011: 2643-2650. doi: 10.1109/ICCV.2011.6126554. | 
| LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]. International Conference on Machine Learning, Montreal, 2009: 609-616. doi: 10.1145 /1553374.1553453. | 
| BAI Y, YU W, XIAO T, et al. Bag-of-words based deep neural network for image retrieval[C]. Proceedings of the ACM International Conference on Multimedia, New York, 2014: 229-232. doi:  10.1145/2647868.2656402. | 
| BOUREAU Y, BACH F, LECUN Y, et al. Learning mid-level features for recognition[C]. IEEE Conference on Computer Vision  Pattern Recognition, 2010: 2559-2566. doi:10. 1109/CVPR.2010.5539963. | 
| YU K, LIN Y, and LAFFERTY J. Learning image representations from the pixel level via hierarchical sparse coding[C]. IEEE Conference on Computer Vision  Pattern Recognition, Colorado Springs, 2011: 1713-1720. doi: 10. 1109/CVPR.2011.5995732. | 
| HINTON G E. Training products of experts by minimizing Ccontrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800. doi:  10.1162/089976602760128018. | 
