Advanced Search
Volume 38 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
LI Gang, WANG Pengjun, ZHANG Yuejun, QIAN Haoyu. Design of Multi-port Configurable PUF Circuit Based on 65 nm Technology[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1541-1546. doi: 10.11999/JEIT150968
Citation: LI Gang, WANG Pengjun, ZHANG Yuejun, QIAN Haoyu. Design of Multi-port Configurable PUF Circuit Based on 65 nm Technology[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1541-1546. doi: 10.11999/JEIT150968

Design of Multi-port Configurable PUF Circuit Based on 65 nm Technology

doi: 10.11999/JEIT150968
Funds:

The National Natural Science Foundation of China (61474068, 61274132), The Natural Science Foundation of Zhejiang Provice (LQ14F040001), The Project of Department of Education of Zhejiang Provice (Y201430798)

  • Received Date: 2015-08-24
  • Rev Recd Date: 2016-01-20
  • Publish Date: 2016-06-19
  • Physical Unclonable Functions (PUF) exploits process variation across the same structure circuits during the manufacturing processes to generate numerous unique, random and unclonable security keys. In this paper, a multi-port configurable PUF scheme is proposed, which is based on random deviation of current mirrors. It consists of input register, deviation-voltage source, multiplexing-net, arbiter array and obfuscation circuit. After configuring deviation-voltage source by applying different input challenges, the PUF circuit updates keys without physically replacement, and it can generate multi-bit keys in a clock cycle. In SMIC 65 nm CMOS technology, the layout of 36 ports configurable PUF occupies 24.8 m77.4 m with custom designing. Experimental results show that the PUF circuit possesses better statistical characteristic of uniqueness and randomness, and it has a high reliability of 97.4% with respect to temperature variation from ?40 C to 125 C, and supply voltage variation from 1.08 V to 1.32 V. It can be effectively used in information security field.
  • loading
  • POTKONJAK M and GOUDAR V. Public physical unclonable functions[J]. Proceedings of the IEEE, 2014, 102(8): 1142-1156. doi: 10.1109/JPROC.2014.2331553.
    HERDER C, YU M D, KOUSHANFA F, et al. Physical unclonable functions and Applications: a tutorial[J]. Proceedings of the IEEE, 2014, 102(8): 1126-1141. doi: 10.1109/JPROC.2014. 2320516.
    PAPPU R, RECHT R, TAYLOR J, et al. Physical one-way function[J]. Science, 2002, 297(5589): 2026-2030.
    项群良, 张培勇, 欧阳冬生, 等. 多频率段物理不可克隆函数[J]. 电子与信息学报, 2012, 34(8): 2007-2012. doi: 10.3724/SP.J.1146. 2011.01249.
    XIANG Qunliang, ZHANG Peiyong, OUYANG Dongsheng, et al. Multiple frequency slots based physical unclonable functions[J]. Journal of Electronics Information Technology, 2012, 34(8): 2007-2012. doi: 10.3724/SP.J.1146.2011.01249.
    MATHEW S K, SATPATHY S K, ANDERS M A, et al. A 0.19pJ/b PVT-variation-tolerant hybrid physically unclonable function circuit for 100% stable secure key generation in 22 nm CMOS[C]. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2014: 278-279.
    LAO Y J and PARHI K. Statistical analysis of MUX-based physical unclonable functions[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(5): 649-662. doi: 10.1109/TCAD.2013.2296525.
    SUH G E and DEVADAS S. Physical unclonable functions for device authentication and secret key generation[C]. Proceedings of the Design Automation Conference, San Francisco, 2007: 9-14.
    GUAJARDO J, KUMAR S S, and CHRIJEN G J. FPGA intrinsic PUF and their use for IP protection[C]. Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems, Vienna, 2007: 63-80.
    汪鹏君, 张跃军, 张学龙. 防御差分功耗分析攻击技术研究[J]. 电子与信息学报, 2012, 34(11): 2774-2784. doi: 10.3724/SP.J.1146. 2012.00555.
    WANG Pengjun, ZHANG Yuejun, and ZHANG Xuelong. Research of differential power analysis countermeasures[J]. Journal of Electronics Information Technology, 2012, 34(11): 2774-2784. doi: 10.3724/SP.J.1146.2012.00555.
    YING S, HOLLEMAN J, and OTIS B P. A digital 1.6 pJ/bit chip identification circuit using process variations[J]. IEEE Journal of Solid-State Circuits, 2008, 41(3): 69-77. doi: 10.1109/JSSC.2007. 910961.
    BAI C, ZOU X, and DAI K. A novel thyristor-based silicon physical unclonable function[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(1): 290300. doi: 10.1109/TVLSI.2015.2398454.
    池保勇. 模拟集成电路与系统[M]. 北京: 清华大学出版社, 2009: 186-189.
    CHI Baoyong. Analog Integrated Circuits and Systems[M]. Beijing: Tsinghua University Press, 2009: 186-189.
    CAO Y, ZHANG L, CHANG C H, et al. A low-power hybrid RO PUF with improved thermal stability for lightweight applications[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(7): 1143-1147. doi: 10.1109/TCAD.2015.2424955.
    GANTA D, VIVEKRAJA V, PRIYA K, et al. A highly stable leakage-based silicon physical unclonable functions[C]. IEEE International Conference on VLSI Design, Madras, 2011: 135-140.
    KALYANARAMAN M and ORSHANSKY M. Novel strong PUF based on nonlinearity of MOSFET subthreshold operation[C]. IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Austin, 2013: 13-18.
    KUMAR R and BURLESON W. On design of a highly secure PUF based on non-linear current mirrors[C]. IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Washington, 2014: 38-43.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1630) PDF downloads(521) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return