Advanced Search
Volume 38 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
SONG Tao, LI Ou, LIU Guangyi. Moving Object Detection Method Via Superpixels Based on Spatiotemporal Multi-cues Fusion[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1503-1511. doi: 10.11999/JEIT150950
Citation: SONG Tao, LI Ou, LIU Guangyi. Moving Object Detection Method Via Superpixels Based on Spatiotemporal Multi-cues Fusion[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1503-1511. doi: 10.11999/JEIT150950

Moving Object Detection Method Via Superpixels Based on Spatiotemporal Multi-cues Fusion

doi: 10.11999/JEIT150950
Funds:

National Science and Technology Major Projects of China (2014ZX03006003)

  • Received Date: 2015-08-19
  • Rev Recd Date: 2015-12-13
  • Publish Date: 2016-06-19
  • Moving object detection is a challenging issue in computer vision. In this paper, a new detection method via superpixels is proposed based on spatiotemporal multi-cues fusion. First, the current frame is segmented into a set of superpixels using simple linear iterative clustering and the subblocks of foreground superpixels containing motion information are captured according to the time-varying cue of inter-frame pixel-level. Then, a target model of the previous frame, which is established on the basis of the consistency principle of motion target and space clues of a target, are combined to further determine the detection window including the moving object. Finally, the problem of object detection is converted to object segmentation and an object is divided from the detection window utilizing the dense corner detection. Experimental results using several challenging public video sequences show the effectiveness and superiority of the proposed method compared with other state-of-the-art detection approaches.
  • loading
  • HU W, TAN T, and WANG L. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(3): 334-352. doi: 10.1109/TSMCC.2004.829274.
    BROX T and MALIK J. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(3): 500-513. doi: 10.1109/TPAMI.2010. 143.
    RADKE R J, ANDRA S, and Al-KOFAHI O. Image change detection algorithms: a systematic survey[J]. IEEE Transactions on Image Processing, 2005, 14(3): 294-307. doi: 10.1109/TIP.2004.838698.
    周建英, 吴小培, 张超, 等. 基于滑动窗的混合高斯模型运动目标检测方法[J]. 电子与信息学报, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449.
    ZHOU Jianying, WU Xiaopei, ZHANG Chao, et al. A moving object detection method based on sliding window Gaussian mixture model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449.
    VAN D M and BARNICH O. ViBe: a disruptive method for background subtraction[C]. Proceedings of the Background Modeling and Foreground Detection for Video Surveillance, CRC, USA, 2014: 1-23.
    ST-CHARLES P L and BILODEAU G A. Improving background subtraction using local binary similarity patterns[C]. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, 2014: 509-515.
    CHEN Shengyong, ZHANG Jianhua, and LI Youfu. A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction[J]. IEEE Transactions on Industrial Informatics, 2012, 8(1): 118-127. doi: 10.1109/TII.2011.2173202.
    STAUFFER C and GRIMSON W. Adaptive background mixture models for real-time tracking[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, 1999: 246-252.
    EVANGELIO R H, PATZOLD M, and KELLER I. Adaptively splitted GMM with feedback improvement for the task of background subtraction[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5): 863-874. doi: 10.1109/TIFS.2014.2313919.
    MARTINS P, CASEIRO R, and BATISTA J. Non- parametric Bayesian constrained local models[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 1797-1804.
    BARNICH O and VAN D M. ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724. doi: 10.1109/TIP.2010.2101613.
    庄哲民, 章聪友, 杨金耀, 等. 基于灰度特征和自适应阈值的虚拟背景提取研究[J]. 电子与信息学报, 2015, 37(2): 346-352. doi: 10.11999/JEIT140317.
    ZHUANG Zhemin, ZHANG Congyou, YANG Jinyao, et al. Investigation on visual background extractor based on gray feature and adaptive threshold[J]. Journal of Electronics Information Technology, 2015, 37(2): 346-352. doi: 10.11999/ JEIT140317.
    ST-CHARLES P, BILODEAU G, and BERGEVIN R. SuBSENSE: a universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2015, 24(1): 359-373. doi: 10.1109/TIP.2014. 2378053.
    MOGHADAM A A, KUMAR M, and RADHA H. Common and Innovative visuals: a sparsity modeling framework for video[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4055-4069. doi: 10.1109/TIP.2014.2321476.
    ALEXE B, DESELAERS T, and FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2189-2202. doi: 10.1109/TPAMI.2012.28.
    ZHANG Luming, XIA Yingjie, JI Rangping, et al. Spatial-aware object-level saliency prediction by learning graphlet hierarchies[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1301-1308. doi: 10.1109/TIE.2014. 2336602.
    LIU Zhi, ZOU Wenbin, and MEUR O L. Saliency tree: a novel saliency detection framework[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1937-1952. doi: 10.1109/TIP. 2014.2307434.
    XU Li, JIA Jiaya, and MATSUSHITA Y. Motion detail preserving optical flow estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1744-1757. doi: 10.1109/TPAMI.2011.236.
    LIU Zhi, ZHANG Xiang, LUO Shuhua, et al. Superpixel-based spatiotemporal saliency detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(9): 1522-1540. doi: 10.1109/TCSVT.2014.2308642.
    WU Jianxin and REHG J M. CENTRIST: a visual descriptor for scene categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1489-1501. doi: 10.1109/TPAMI.2010.224.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2281. doi: 10.1109/TPAMI.2012.120.
    WANG Yi, JODOIN P M, and PORIKLI F. CDnet 2014: an expanded change detection benchmark dataset[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, 2014: 393-400.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1499) PDF downloads(774) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return