Citation: | SONG Tao, LI Ou, LIU Guangyi. Moving Object Detection Method Via Superpixels Based on Spatiotemporal Multi-cues Fusion[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1503-1511. doi: 10.11999/JEIT150950 |
HU W, TAN T, and WANG L. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(3): 334-352. doi: 10.1109/TSMCC.2004.829274.
|
BROX T and MALIK J. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(3): 500-513. doi: 10.1109/TPAMI.2010. 143.
|
RADKE R J, ANDRA S, and Al-KOFAHI O. Image change detection algorithms: a systematic survey[J]. IEEE Transactions on Image Processing, 2005, 14(3): 294-307. doi: 10.1109/TIP.2004.838698.
|
周建英, 吴小培, 张超, 等. 基于滑动窗的混合高斯模型运动目标检测方法[J]. 电子与信息学报, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449.
|
ZHOU Jianying, WU Xiaopei, ZHANG Chao, et al. A moving object detection method based on sliding window Gaussian mixture model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449.
|
VAN D M and BARNICH O. ViBe: a disruptive method for background subtraction[C]. Proceedings of the Background Modeling and Foreground Detection for Video Surveillance, CRC, USA, 2014: 1-23.
|
ST-CHARLES P L and BILODEAU G A. Improving background subtraction using local binary similarity patterns[C]. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, 2014: 509-515.
|
CHEN Shengyong, ZHANG Jianhua, and LI Youfu. A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction[J]. IEEE Transactions on Industrial Informatics, 2012, 8(1): 118-127. doi: 10.1109/TII.2011.2173202.
|
STAUFFER C and GRIMSON W. Adaptive background mixture models for real-time tracking[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, 1999: 246-252.
|
EVANGELIO R H, PATZOLD M, and KELLER I. Adaptively splitted GMM with feedback improvement for the task of background subtraction[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5): 863-874. doi: 10.1109/TIFS.2014.2313919.
|
MARTINS P, CASEIRO R, and BATISTA J. Non- parametric Bayesian constrained local models[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 1797-1804.
|
BARNICH O and VAN D M. ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724. doi: 10.1109/TIP.2010.2101613.
|
庄哲民, 章聪友, 杨金耀, 等. 基于灰度特征和自适应阈值的虚拟背景提取研究[J]. 电子与信息学报, 2015, 37(2): 346-352. doi: 10.11999/JEIT140317.
|
ZHUANG Zhemin, ZHANG Congyou, YANG Jinyao, et al. Investigation on visual background extractor based on gray feature and adaptive threshold[J]. Journal of Electronics Information Technology, 2015, 37(2): 346-352. doi: 10.11999/ JEIT140317.
|
ST-CHARLES P, BILODEAU G, and BERGEVIN R. SuBSENSE: a universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2015, 24(1): 359-373. doi: 10.1109/TIP.2014. 2378053.
|
MOGHADAM A A, KUMAR M, and RADHA H. Common and Innovative visuals: a sparsity modeling framework for video[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4055-4069. doi: 10.1109/TIP.2014.2321476.
|
ALEXE B, DESELAERS T, and FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2189-2202. doi: 10.1109/TPAMI.2012.28.
|
ZHANG Luming, XIA Yingjie, JI Rangping, et al. Spatial-aware object-level saliency prediction by learning graphlet hierarchies[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1301-1308. doi: 10.1109/TIE.2014. 2336602.
|
LIU Zhi, ZOU Wenbin, and MEUR O L. Saliency tree: a novel saliency detection framework[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1937-1952. doi: 10.1109/TIP. 2014.2307434.
|
XU Li, JIA Jiaya, and MATSUSHITA Y. Motion detail preserving optical flow estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1744-1757. doi: 10.1109/TPAMI.2011.236.
|
LIU Zhi, ZHANG Xiang, LUO Shuhua, et al. Superpixel-based spatiotemporal saliency detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(9): 1522-1540. doi: 10.1109/TCSVT.2014.2308642.
|
WU Jianxin and REHG J M. CENTRIST: a visual descriptor for scene categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1489-1501. doi: 10.1109/TPAMI.2010.224.
|
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2281. doi: 10.1109/TPAMI.2012.120.
|
WANG Yi, JODOIN P M, and PORIKLI F. CDnet 2014: an expanded change detection benchmark dataset[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, 2014: 393-400.
|