Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
LIU Chengyun, CHANG Faliang, CHEN Zhenxue. Traffic Sign Detection Based on Regions of Interest and HOG-MBLBP Features[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1092-1098. doi: 10.11999/JEIT150918
Citation: LIU Chengyun, CHANG Faliang, CHEN Zhenxue. Traffic Sign Detection Based on Regions of Interest and HOG-MBLBP Features[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1092-1098. doi: 10.11999/JEIT150918

Traffic Sign Detection Based on Regions of Interest and HOG-MBLBP Features

doi: 10.11999/JEIT150918
Funds:

The National Natural Science Foundation of China (61273277, 61203261), Shandong Province Natural Science Foundation (ZR2011FM032, ZR2012FQ003), Specialized Research Fund for the Doctoral Program of Higher Education (20130131110038)

  • Received Date: 2015-08-05
  • Rev Recd Date: 2015-12-25
  • Publish Date: 2016-05-19
  • The imbalance between sample categories in traffic sign detection often results in the weakening of classification detection performance. To overcome this problem, a traffic sign detection method is proposed based on regions of interest and Histogram of Oriented Gradient and Multi-radius Block Local Binary Pattern (HOG-MBLBP) features. First, the color enhancement technology is used to segment and extract the regions of interest of the traffic signs captured in the natural background. Then HOG-MBLBP fusion features are extracted from traffic signs sample library. Moreover, genetic algorithm is used to optimize the parameters of Support Vector Machine (SVM) through cross-validation so as to train and promote SVM classifier performance. Finally, extracted HOG-MBLBP features of interest region images are put into the trained SVM multi-classifiers for further accurate detection and localization. By this method, the paper achieves the purpose of excluding false positives area. The experiments are carried out on the self-built Chinese traffic sign sample library, experimental results show that the proposed method can achieve 99.2% of classification accuracy, and the confusion matrix results also show the superiority of the proposed method.
  • loading
  • 刘华平, 李建民, 胡晓林, 等. 动态场景下的交通标识检测与识别研究进展[J]. 中国图象图形学报, 2013, 18(5): 493-503.
    LIU Huaping, LI Jianmin, HU Xiaolin, et al. Recent progress in detection and recognition of the traffic signs in dynamic scenes[J]. Journal of Image and Graphics, 2013, 18(5): 493-503.
    常发亮, 黄翠, 刘成云, 等. 基于高斯颜色模型和SVM的交通标志检测[J]. 仪器仪表学报, 2014, 35(1): 43-49.
    CHANG Faliang, HUANG Cui, LIU Chengyun, et al. Traffic sign detection based on Gaussian color model and SVM[J]. Chinese Journal of Scientific Instrument, 2014, 35(1): 43-49.
    MALDONADO-BASCON S, LAFUENTE-ARROYO S, GIL-JIMENEZ P, et al. Road-sign detection and recognition based on support vector machines[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2): 264-278. doi: 10.1109/TITS.2007.895311.
    徐迪红, 唐炉亮. 基于颜色和标志边缘特征的交通标志检测[J].武汉大学学报(信息科学版), 2008, 33(4): 433-436.
    XU Dihong and TANG Luliang. Traffic sign detection based on color and boundary feature[J].Geomatics and Information Science of Wuhan University, 2008, 33(4): 433-436.
    GARCIA-GARRIDO M A, SOTELO M A, and MARTIN- GOROSTIZA E. Fast road sign detection using hough transform for assisted driving of road vehicles[C]. Proceedings of 10th International Conference on Computer Aided Systems Theory, Berlin, 2005: 543-548.
    HOFERLIN B and ZIMMERMANN K. Towards reliable traffic sign recognition[C]. Proceedings of the IEEE Intelligent Vehicles Symposium, Xian, 2009: 324-329.
    KHAN J F, BHUIYAN S, and ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83-96. doi: 10.1109/TITS.2010.2073466.
    CARAFFI C, CARDARELLI E, MEDICI P, et al. An algorithm for Italian de-restriction signs detection[C]. Proceedings of the IEEE Intelligent Vehicles Symposium, Eindhoven, 2008: 834-840.
    ZAKLOUTA F and STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous System, 2014, 62(1): 16-24. doi: 10.1016/j.robot.2012.07.019.
    LIU C, CHANG F, and CHEN Z. Rapid multiclass traffic sign detection in high-resolution images[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2394-2403. doi: 10.1109/TITS.2014.2314711.
    潘泓, 李晓兵, 金立左, 等. 一种基于二值粒子群优化和支持向量机的目标检测算法[J]. 电子与信息学报, 2011, 33(1): 117-121. doi: 10.3724/SP.J.1146.2010.00260.
    PAN Hong, LI Xiaobing, JIN Lizuo, et al. A binary particle swarm optimization and support vector machine-based algorithm for object detection[J]. Journal of Electronics Information Technology, 2011, 33(1): 117-121. doi: 10.3724/ SP.J.1146.2010.00260.
    李骏扬, 金立左, 费树岷, 等. 基于多尺度特征表示的城市道路检测[J]. 电子与信息学报, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LILLO-CASTELLANO J M, MORA-JIMENEZ I, FIGUERA- POZUELO C, et al. Traffic sign segmentation and classification using statistical learning methods[J]. Neurocomputing, 2015, 153: 286-299. doi: 10.1016/ j.neucom. 2014. 11.026.
    SALTI S, PETRELLI A, TOMBARI F, et al. Traffic sign detection via interest region extraction[J]. Pattern Recognition, 2015, 48(4): 1039-1049. doi: 10.1016/ j.patcog. 2014.05.017.
    RUTA A, LI Y, and LIU X. Real-time traffic sign recognition from video by class-specific discriminative features[J]. Pattern Recognition, 2010, 43(1): 416-430. doi: 10.1016/j. patcog.2009.05.018.
    RUTA A, PORIKLI F, WATANABE S, et al. In-vehicle camera traffic sign detection and recognition[J]. Machine Vision and Applications, 2011, 22(2): 359-375. doi: 10.1007/ s00138-009-0231-x.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of the International Conference on Computer Vision and Pattern Recognition, Beijing, 2005: 886-893.
    OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109/TPAMI.2002.1017623.
    WANG X, HAN T X, and YAN S. An HOG-LBP human detector with partial occlusion handling[C]. Proceedings of 12th IEEE International Conference on Computer Vision, Kyoto, 2009: 32-39.
    陈龙, 潘志敏, 毛庆洲, 等. 利用HOG-LBP自适应融合特征实现禁令交通标志检测[J]. 武汉大学学报(信息科学版), 2013, 38(2): 191-194.
    CHEN Long, PAN Zhimin, MAO Qingzhou, et al. HOG-LBP adaptable fused features based method for forbidden traffic signs detection[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 191-194.
    CORTES C and VAPNIK V. Support-vector network[J]. Machine Learning, 1995, 20(3): 273-297. doi: 10.1023/ A:1022627411411.
    刘志强, 吕学, 张利. 基于多分类GA-SVM的高速公路AID模型[J]. 系统工程理论与实践, 2013, 33(8): 2110-2115.
    LIU Zhiqiang, L Xue, and ZHANG Li. Highway automatic incident detection based on multi-class classification and GA-SVM[J]. Systems Engineering-Theory Practice, 2013, 33(8): 2110-2115.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1764) PDF downloads(391) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return