Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
TANG Zhongqi, FU Guangyuan, CHEN Jin, ZHANG Li. Low-rank Structure Based Hyperspectral Compression Representation[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1085-1091. doi: 10.11999/JEIT150906
Citation: TANG Zhongqi, FU Guangyuan, CHEN Jin, ZHANG Li. Low-rank Structure Based Hyperspectral Compression Representation[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1085-1091. doi: 10.11999/JEIT150906

Low-rank Structure Based Hyperspectral Compression Representation

doi: 10.11999/JEIT150906
Funds:

The National Natural Science Foundation of China (61132007, 61202332, 61503405), The National Natural Science Foundation for Young Scientists of China (61403397), China Postdoctoral Science Foundation (2012M521905), Natural Science Foundation of Shaanxi Province, China (2015JM6313)

  • Received Date: 2015-07-30
  • Rev Recd Date: 2015-12-31
  • Publish Date: 2016-05-19
  • A method which makes use of structure information abstracted from hyperspectral data via low-rank matrix recovery for hyperspectral image classification is proposed in this paper. The principle of maximizing structure information based on Structural Similarity Index Measurement (SSIM) is proposed to restrain the process of matrix recovery as well, which facilitates the separation of the signal and the noise. The experiments show that the proposed algorithm can effectively eliminate the non-linear noise in hyperspectral image and abstract the low-rank characteristics of hyperspectral image, which achieves better performance in classification.
  • loading
  • 吴倩, 张荣, 徐大卫. 基于稀疏表示的高光谱数据压缩算法[J]. 电子与信息学报, 2015, 37(1): 78-84. doi: 10.11999/ JEIT140214.
    WU Qian, ZHANG Rong, and XU Dawei. Hyperspectral data compression based on sparse representation[J]. Journal of Electronics Information Technology, 2015, 37(1): 78-84. doi: 10.11999/JEIT140214.
    CAMPS-VALLS G, TUIA D, BRUZZONE L, et al. Advances in hyperspectral image classification[J]. IEEE Signal Processing Magazine, 2014, 21(4): 45-54. doi: 10.1109/MSP. 2013.2279179.
    贾应彪, 冯燕, 王忠良, 等. 基于谱间结构相似先验的高光谱压缩感知重构[J]. 电子与信息学报, 2014, 36(6): 1406-1412. doi: 10.3724/SP.J.1146.2013.01132.
    JIA Yingbiao, FENG Yan, WANG Zhongliang, et al. Hyperspectral compressive sensing recovery via spectrum structure similarity[J]. Journal of Electronics Information Technology, 2014, 36(6): 1406-1412. doi: 10.3724/SP.J.1146. 2013.01132.
    BIOUCAS-DIAS J, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Remote Sensing Magazine, 2013, 1(2): 6-36. doi: 10.1109/MGRS.2013.2244672.
    粘永健, 辛勤, 汤毅, 等. 基于多波段预测的高光谱图像分布式无损压缩[J]. 光学精密工程, 2012, 20(4): 906-912. doi: 10.3788/OPE.20122004.0906.
    NIAN Yongjian, XIN Qin, TANG Yi, et al. Distributed lossless compression of hyperspectral images based on multi-band prediction[J]. Optics and Precision Engineering, 2012, 20(4): 906-912. doi: 10.3788/OPE.20122004.0906.
    唐中奇, 付光远, 陈进, 等. 基于多尺度分割的高光谱图像稀疏表示与分类[J]. 光学精密工程, 2015, 23(9): 2708-2714. doi: 10.3788/OPE.20152309.2708.
    TANG Zhongqi, FU Guangyuan, CHEN Jin, et al. Multiscale segmentation-based sparse coding for hyperspectral image classification[J]. Optics and Precision Engineering, 2015, 23(9): 2708-2714. doi: 10.3788/OPE.20152309.2708.
    ZHOU Yicong, PENG Jiangtao, and CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1082-1095. doi: 10.1109/TGRS. 2014.2333539.
    LIAO W, PIZURICA A, SCHEUNDERS P, et al. Semi- supervised local discriminant analysis for feature extraction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 184-198. doi: 10.1109/ TGRS.2012.2200106.
    CARIOU C, CHEHDI K, and MOAN S L. An unsupervised band reduction method for hyperspectral remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 565-569. doi: 10.1109/LGRS.2010.2091673.
    XUE Zhaohui, LI Jun, CHENG Liang, et al. Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 70-84. doi: 10.1109/TGRS.2014.2318332.
    LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2013, 35(1): 171-184. doi: 10.1109/ TPAMI.2012.88.
    CANDS E, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3). doi: 10.1145/1970392.1970395.
    LIANG Xiao, REN Xiang, ZHANG Zhengdong, et al. Repairing sparse low-rank texture[C]. European Conference on Computer Vision (ECCV), Florence, Italy, 2012. doi: 10.1007/978-3-642-33715-4_35.
    JIA Kui, CHAN T H, and MA Yi. Robust and practical face recognition via structured sparsity[C]. European Conference on Computer Vision (ECCV), Florence, Italy, 2012. doi: 10.1007/978-3-642-33765-9_24.
    WANG Z and SIMONCELLI E P. An adaptive linear system framework for image distortion analysis[C]. IEEE International Conference Image Processing, Genoa, Italy, 2005, 3: 1160-1163. doi: 10.1007/11889762_19.
    LIN Zhouchen, CHEN Minming, WU Leqin, et al. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[R]. University of Illinois at Urbana Champaign (UIUC) Technical Report UILU- ENG-09-2215, 2009. doi: 10.1016/j.jsb.2012.10.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1474) PDF downloads(386) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return