Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
HAN Dandan, MIN Lequan, ZHAO Geng. Application of 8-dimensional Generalized Synchronization System in Pseudorandom Number Generator[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1158-1165. doi: 10.11999/JEIT150899
Citation: HAN Dandan, MIN Lequan, ZHAO Geng. Application of 8-dimensional Generalized Synchronization System in Pseudorandom Number Generator[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1158-1165. doi: 10.11999/JEIT150899

Application of 8-dimensional Generalized Synchronization System in Pseudorandom Number Generator

doi: 10.11999/JEIT150899
Funds:

The National Natural Science Foundation of China (61074192, 61170037)

  • Received Date: 2015-07-30
  • Rev Recd Date: 2015-12-18
  • Publish Date: 2016-05-19
  • This paper proposes a class of 4-Dimensional Discrete Systems (4DDSs). Using the eigenvalues of Jacobian matrix of the system at the equilibrium, the?stability of the system at the equilibrium is analyzed. A theorem is set up, which is used to determine whether the class systems are periodic or chaotic. Based on the theorem, a 4DDS is constructed. The 4DDS has positive Lyapunov exponent. Numerical simulations show that the dynamic behaviors of the 4DDS have chaotic attractor characteristics as they expects. Combining the 4DDS with Generalized Synchronization (GS) theorem, an 8-Dimensional GS Chaotic System (8DGSCS) is designed. Using this system, this paper designs a 16 bit string Chaotic Pseudo Random Number Generator (CPRNG). Theoretically the key space of the CPRNG is larger than 21245. The FIPS 140-2 test suit/Generalized FIPS 140-2 test suit are used to test the randomness of the 1000-key streams consisting of 20000 bit generated by the CPRNG, Narendra RBG, RC4 PRNG and ZUC PRNG, respectively. The results show that there are 100%/99%, 100%/ 82.9%, 99.9%/98.8% and 100%/97.9% key streams passing the FIPS 140-2 test suit/Generalized FIPS 140-2 test suit, respectively. Numerical simulations show that the different key-streams have 50.004% different codes. The results show that the generated CPRNG has good randomness properties, can better resist the brute attack. The designed CPRNG provides a novel tool for the research and development of cryptography.
  • loading
  • SPROTT J G. Chaos and Time-sries Analysis[M]. Oxford: Oxford University Press, 2003: 1-120.
    LI Tianyan and YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992.
    BARBERIS G E. Non-periodic pseudo-random numbers used in Monte Carlo calculations[J]. Physica B-Condensed Matter, 2007, 398: 468-471. doi: 10.1016/j.physb.2007.04.088.
    DIAZ N C, GIL A V, and VARGAS M J. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry[J]. Applied Radiation and Isotopes, 2010, 68(3): 469-473. doi: 10.1016/ j.apradiso.2009.11.037
    JOAN M S, JOAQUIN G A, and JORDI H J. J3Gen: a PRNG for low-cost passive RFID[J]. Sensors, 2013, 13(3): 3816-3830. doi: 10.3390/s130303816.
    HARASE S. On the F2-linear relations of Mersenne Twister pseudorandom number generators[J]. Mathematics and Computers in Simulation, 2014, 100(1): 103-113. doi: 10. 1016/j.matcom.2014.02.002.
    PATIDAR V, PAREEK N K, PUROHIT G, et al. A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption[J]. Optics Communications, 2011, 284(19): 4331-4339. doi: 10. 1016/j.optcom.2011.05.028.
    TIAN Hui, ZHOU Ke, and LU Jing. A VoIP-based covert communication scheme using compounded pseudorandom sequence[J]. International Journal of Advancements in Computing Technology, 2012, 4(1): 223-230. doi: 10.4156/ ijact.vol4.issue1.25.
    MIN Lequan and CHEN Guanrong. A novel stream encryption scheme with avalanche effect[J]. The European Physical Journal B, 2013, 86(11): 459-472. doi: 10.1140/ epjb/e2013-40199-7.
    HAZARIKA N and SAIKIA M. A novel partial image encryption using chaotic logistic map[C]. Proceedings of 2014 International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 2014: 231-236.
    WANG Xingyuan, LIU Lintao, and ZHANG Yingqian. A novel chaotic block image encryption algorithm based on dynamic random growth technique[J]. Optics and Lasers in Engineering, 2015, 66(1): 10-18. doi: 10.1016/j.optlaseng. 2014.08.005.
    NIST. Fips-pub-140 Security Requirements for Cryptographic Modules[M]. Gaithersburg: NIST Special Publication, 2001: 1-30.
    RUKHIN R, SOTO J, NECHVATAL J, et al. SP800-22-2001. a statistical test suite for random and pseudorandom number generator for cryptographic applications[S]. 2001.
    王蕾, 汪芙平, 王赞基. 一种新型的混沌伪随机数发生器[J]. 物理学报, 2006, 55(8): 3964-3968.
    WANG Lei, WANG Fuping, and WANG Zanji. A novel chaos based pseudorandom number generator[J]. Acta Physica Sinica, 2006, 55(8): 3964-3968.
    王华伟. 无理数发生器及确定性随机数发生器[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(1): 215-218.
    WANG Huawei. Irrational number generator and deterministic random bit generator[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2012, 36(1): 215-218.
    NARENDRA K P, VINOD P, and KRISHAN K S. A random bit generator using chaotic maps[J]. International Journal of Network Security, 2010, 10(1): 32-38.
    FRANCOIS M, GROSGES T, and BARCHIESI D. Pseudo-random number generator based on mixing of three chaotic maps[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 887-895. doi: 10.1016/ j.cnsns.2013.08.032.
    AKHSHANI A, AKHAVAN A, and MOBARAKI A. Pseudo random number generator based on quantum chaotic map[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1): 101-111. doi: 10.1016/j.cnsns.2013. 06.017.
    ZANG Hongyan, MIN Lequan, and ZHAO Geng. A generalized synchronization theorem for discrete-time chaos system with application in data encryption scheme[C]. Proceedings of 2007 International Conference on Communications, Kokura, Fukuoka Japan, 2007: 1325-1329.
    MIN Lequan, HAO Longjie, and ZHANG Lijiao. Study on the statistical test for string pseudorandom number generators[J]. Advances in Brain Inspired Cognitive Systems, 2013, 7888(1): 278-287. doi: 10.1007/978-3-642-38786-9_32.
    MIN Lequan, CHEN Tianyu, and ZANG Hongyan. Analysis of Fips 140-2 test and chaos- based pseudorandom number generator[J]. Chaotic Modeling and Simulation, 2013, 2(1): 273-280.
    GOLOMB S. Shift Register Sequences[M]. Laguna Hills: Aegean Park Press, 1981: 1-100.
    ETSI/SAGE TS 35.222-2011. Specification of the 3GPP confidentiality and integrity algorithms 128-EEA3 128-EIA3. Document 2: ZUC Specification[S]. 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1256) PDF downloads(278) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return