Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
SHE Qingshan, CHEN Xihao, GAO Farong, LUO Zhizeng. Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1266-1270. doi: 10.11999/JEIT150851
Citation: SHE Qingshan, CHEN Xihao, GAO Farong, LUO Zhizeng. Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1266-1270. doi: 10.11999/JEIT150851

Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest

doi: 10.11999/JEIT150851
Funds:

The National Natural Science Foundation of China (61201302, 61172134), State Scholarship Fund of China (201308330297), Natural Science Foundation of Zhejiang Province (LY15F010009)

  • Received Date: 2015-07-16
  • Rev Recd Date: 2016-01-29
  • Publish Date: 2016-05-19
  • Brain functional network is introduced to feature extraction of ElectroEncephaloGraphy (EEG), and a novel method is proposed based on Least Absolute Shrinkage and Selection Operator (LASSO)-Granger causality between Region Of Interest (ROI) in the brain, in order to overcome the inherent deficiencies of research methods based on isolated brain region. Firstly, the maximum principal component of ROIs is extracted by Principal Component Analysis (PCA), and then causality values between ROIs are calculated by LASSO-Granger. Finally, the values are used as the input vector for Support Vector Machine (SVM), and then four datasets of BCI Competition IV Dataset 1 are used for classification.Experimental results show that different motor imagery tasks are successfully identified by the method of SVM classifier combined with feature extraction which is based on LASSO-Granger causality between the brain region of interest (ROIs). This method provides a new idea for the study of extracting EEG features.
  • loading
  • ARBONELL F, NAGANO-SAITO A, LEYTON M, et al. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks[J]. Neuropharmacology, 2014, 84: 90-100.
    闫铮, 高小榕, 应俊. 基于认知功能连接的信息流增益计算方法及应用[J]. 电子与信息学报, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    YAN Zheng, GAO Xiaorong, and YING Jun. The flow gain methods and applications based on cognition functional connectivity[J]. Journal of Electronics Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146. 2013.02019.
    GRABBERR L, JOLA C, BERRA G, et al. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis[J]. NeuroRehabilitation, 2015, 37(2): 263-271.
    DING M, CHEN Y, and BRESSLER S L. Granger causality: basic theory and application to neuroscience[J]. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, 2006, 17: 437-460.
    吴明权, 李海峰, 马琳. 单通道脑电信号中眼电干扰的自动分离方法[J]. 电子与信息学报, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    WU Mingquan, LI Haifeng, and MA Lin. Automatic electrooculogram separation method for single channel electroencephalogram signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 367-372. doi: 10.11999 /JEIT140602.
    吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314-318.
    Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics Information Technology, 2009, 31(2): 314-318.
    李卫娜, 郑小林, 吴南, 等. 应用因果分析方法对癫痫发作间期头皮脑电信号进行致痫灶定侧[J]. 国际生物医学工程杂志, 2013, 36(5): 261-265.
    LI Weina, ZHENG Xiaolin, WU Nan, et al. Epileptic foci lateralization from interictal scalp EEG by applying causal analysis[J]. International Journal of Biomedical Engineering, 2013, 36(5): 261-265.
    EPSTEIN C M, ADHIKARI B M, GROSS R, et al. Application of high-frequency Granger causality to analysis of epileptic seizures and surgical decision making[J]. Epilepsia, 2014, 55(12): 2038-2047.
    NICOLAOU N, HOURR S, ALEXANDROU P, et al. EEG- based automatic classification of awake versus anesthetized state in general anesthesia using Granger causality[J]. PLoS One, 2012, 7(3): e33869.
    ARNOLD A, LIU Y, and ABE N. Temporal causal modeling with graphical granger methods[C]. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2007: 66-75.
    BENJAMIN B, DORNHERE G, KRAUEDAT M, et al. The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects[J]. NeuroImage, 2007, 37(2): 539-550.
    JOHN S . Cortical functions[Z]. Routledge, 1999: 30-45.
    GAO Qing, DUAN Xujun, and CHEN Huafu. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality[J]. NeuroImage, 2011, 54(2): 1280-1288.
    FRASER A M and SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.
    ZHANG H, CHIN Z Y, ANG K K, et al. Optimum spatio- spectral filtering network for braincomputer interface[J]. IEEE Transactions on Neural Networks, 2011, 22(1): 52-63.
    PARK C, LOONEY D, AHRABIAN A, et al. Classification of motor imagery BCI using multivariate empirical mode decomposition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1): 10-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1847) PDF downloads(482) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return