Citation: | SHE Qingshan, CHEN Xihao, GAO Farong, LUO Zhizeng. Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1266-1270. doi: 10.11999/JEIT150851 |
ARBONELL F, NAGANO-SAITO A, LEYTON M, et al. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks[J]. Neuropharmacology, 2014, 84: 90-100.
|
闫铮, 高小榕, 应俊. 基于认知功能连接的信息流增益计算方法及应用[J]. 电子与信息学报, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
|
YAN Zheng, GAO Xiaorong, and YING Jun. The flow gain methods and applications based on cognition functional connectivity[J]. Journal of Electronics Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146. 2013.02019.
|
GRABBERR L, JOLA C, BERRA G, et al. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis[J]. NeuroRehabilitation, 2015, 37(2): 263-271.
|
DING M, CHEN Y, and BRESSLER S L. Granger causality: basic theory and application to neuroscience[J]. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, 2006, 17: 437-460.
|
吴明权, 李海峰, 马琳. 单通道脑电信号中眼电干扰的自动分离方法[J]. 电子与信息学报, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
|
WU Mingquan, LI Haifeng, and MA Lin. Automatic electrooculogram separation method for single channel electroencephalogram signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 367-372. doi: 10.11999 /JEIT140602.
|
吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314-318.
|
Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics Information Technology, 2009, 31(2): 314-318.
|
李卫娜, 郑小林, 吴南, 等. 应用因果分析方法对癫痫发作间期头皮脑电信号进行致痫灶定侧[J]. 国际生物医学工程杂志, 2013, 36(5): 261-265.
|
LI Weina, ZHENG Xiaolin, WU Nan, et al. Epileptic foci lateralization from interictal scalp EEG by applying causal analysis[J]. International Journal of Biomedical Engineering, 2013, 36(5): 261-265.
|
EPSTEIN C M, ADHIKARI B M, GROSS R, et al. Application of high-frequency Granger causality to analysis of epileptic seizures and surgical decision making[J]. Epilepsia, 2014, 55(12): 2038-2047.
|
NICOLAOU N, HOURR S, ALEXANDROU P, et al. EEG- based automatic classification of awake versus anesthetized state in general anesthesia using Granger causality[J]. PLoS One, 2012, 7(3): e33869.
|
ARNOLD A, LIU Y, and ABE N. Temporal causal modeling with graphical granger methods[C]. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2007: 66-75.
|
BENJAMIN B, DORNHERE G, KRAUEDAT M, et al. The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects[J]. NeuroImage, 2007, 37(2): 539-550.
|
JOHN S . Cortical functions[Z]. Routledge, 1999: 30-45.
|
GAO Qing, DUAN Xujun, and CHEN Huafu. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality[J]. NeuroImage, 2011, 54(2): 1280-1288.
|
FRASER A M and SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.
|
ZHANG H, CHIN Z Y, ANG K K, et al. Optimum spatio- spectral filtering network for braincomputer interface[J]. IEEE Transactions on Neural Networks, 2011, 22(1): 52-63.
|
PARK C, LOONEY D, AHRABIAN A, et al. Classification of motor imagery BCI using multivariate empirical mode decomposition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1): 10-22.
|