Citation: | RUI Lanlan, LI Qinming. Short-term Traffic Flow Prediction Algorithm Based on Combined Model[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1227-1233. doi: 10.11999/JEIT150846 |
兰云. 短时交通流量预测研究[D]. [硕士论文], 西北工业大学, 2002.
|
LAN Yun. The study on short time traffic flow prediction[D]. [Master dissertation], Northwestern Polytechnical University, 2002.
|
范腾腾. 城市道路交通流量短时预测研究[D]. [硕士论文], 北京交通大学, 2012.
|
FAN Tengteng. The research of urban road traffic flow short-term prediction[D]. [Master dissertation], Beijing Jiaotong University, 2012.
|
覃明贵. 城市道路交通数据挖掘研究与应用[D]. [博士论文], 复旦大学, 2010.
|
QIN Minggui. Research and application on the urban traffic data mining[D]. [Ph.D. dissertation], Fudan University, 2010.
|
曹虹. 基于BP神经网络的交通流量预测[D]. [硕士论文], 长安大学, 2012.
|
CAO Hong. Traffic flow prediction based on BP neural network[D]. [Master dissertation], Changan University, 2012.
|
曹炜. 基于BP神经网络的城市交通流量预测与路口分析[D]. [硕士论文], 昆明理工大学, 2006.
|
CAO Wei. The city traffic flow prediction and cross analysis based on BP neural network[D]. [Master dissertation], Kunming University of Science and Technology, 2006.
|
尚宁, 覃明贵, 王亚琴, 等. 基于BP神经网络的路口短时交通流量预测方法[J]. 计算机应用与软件, 2006, 23(2): 32-33, 57.
|
SHANG Ning, QIN Minggui, WANG Yaqin, et al. A BP neural network method for short-term traffic flow forecasting on crossroads[J]. Computer Applications and Software, 2006, 23(2): 32-33, 57.
|
翟敏. 极限学习机的自适应网络结构选择方法研究[D]. [硕士论文], 西北大学, 2014.
|
ZHAI Min. Research on adaptive network structure selection method for extreme learning machine[D]. [Master dissertation], Northwest University, 2014.
|
甘露. 极限学习机的研究与应用[D]. [硕士论文], 西安电子科技大学, 2014.
|
GAN Lu. Research and application of extreme learning machine[D]. [Master dissertation], Xidian University, 2014.
|
王智慧. BP神经网络和ELM算法研究[D]. [硕士论文], 中国计量学院, 2012.
|
WANG Zhi-hui. Research on BP neural networks and ELM Algorithms[D]. [Master dissertation], China Jiliang University, 2012.
|
张一. 基于卡尔曼滤波的短时交通流量预测模型研究[D]. [硕士论文], 沈阳工业大学, 2014.
|
ZHANG Yi. Research of short-term traffic volume prediction based on kalman filtering[D]. [Master dissertation], Shenyang University of Technology, 2014.
|
罗向龙. 交通流量经验模态分解与神经网络短时预测方法[J]. 计算机工程与应用, 2010, 46(26): 212-214. doi: 10.3778/j.issn. 1002-8331.2010.26.066.
|
LUO Xianglong. Short-term traffic flow prediction method based on EMD and artificial neural network[J]. Computer Engineering and Applications, 2010, 46(26): 212-214. doi: 10.3778/j.issn.1002-8331.2010.26.066.
|
沈永增. 基于混沌粒子群优化小波神经网络的短时交通流预测[J]. 计算机应用与软件, 2014, 31(6): 84-87. doi: 10.3969 /j.issn.1000-386x.2014.06.024.
|
SHEN Yongzeng. Short-time traffic flow forecast based on WNN optimised by CPSO[J]. Computer Applications and Software, 2014, 31(6): 84-87. doi: 10.3969/j.issn.1000-386x. 2014.06.024.
|
朱征宇. 一种结合SVM与卡尔曼滤波的短时交通流预测模型[J]. 计算机科学, 2013, 40(10): 248-251.
|
ZHU Zhengyu. Short-term traffic flow forecasting model combining SVM and Kalman filtering[J]. Computer Science, 2013, 40(10): 248-251.
|
TCHRAKIAN T T, BASU B, and OMAHONY M. Real-time traffic flow forecasting using spectral analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 519-526.
|
CHEN Syuanyi and CHOU Weiyao. Short-term traffic flow prediction using EMD-based recurrent Hermite neural network approach[C]. 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, 2012: 1821-1826.
|
CHAN K Y, DILLON T S, SINGH J, et al. Neural- network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg- Marquardt algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 644-654.
|
XU Yanyan, KONG Qingjie, and LIU Yuncai. Short-term traffic volume prediction using classification and regression trees[C]. IEEE Intelligent Vehicles Symposium(IV), Gold Coast, 2013: 493-498.
|
WILLIAMS B M. Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process[D]. [Ph.D. dissertation], University of Virginia, 1999: 243-246.
|