Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
RUI Lanlan, LI Qinming. Short-term Traffic Flow Prediction Algorithm Based on Combined Model[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1227-1233. doi: 10.11999/JEIT150846
Citation: RUI Lanlan, LI Qinming. Short-term Traffic Flow Prediction Algorithm Based on Combined Model[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1227-1233. doi: 10.11999/JEIT150846

Short-term Traffic Flow Prediction Algorithm Based on Combined Model

doi: 10.11999/JEIT150846
Funds:

Funds for Creative Research Groups of China (61121061), The National Natural Science Foundation of China (61302078, 61372108), Beijing Higher Education Young Elite Teacher Project (YETP0476)

  • Received Date: 2015-07-14
  • Rev Recd Date: 2016-01-08
  • Publish Date: 2016-05-19
  • Traffic flow prediction is a key problem of realizing intelligent transportation technology. Forecasting traffic flow in time and accurately is the precondition to realize the dynamic traffic management. Short -term traffic flow prediction is an important part of traffic flow prediction. In this paper, the Traffic Flow Prediction Based on Combined Model (TFPBCM) based on traffic flow sequence partition and Extreme Learning Machine (ELM) is designed for the short time traffic flow forecasting. The algorithm divides the traffic flow into different patterns along a time dimension by K-means, and then models and forecasts for each pattern by ELM. The proposed algorithm is compared with Back Propagation (BP) and ELM. The combined model algorithm on modeling time is 1/10 of BP, but is 4 times ELM. Its MSE is 1/50 of BP and 1/20 of ELM. The combined model algorithms coefficient of detemination (R2 ) is close to 1, so the credibility of the model is higher than others.
  • loading
  • 兰云. 短时交通流量预测研究[D]. [硕士论文], 西北工业大学, 2002.
    LAN Yun. The study on short time traffic flow prediction[D]. [Master dissertation], Northwestern Polytechnical University, 2002.
    范腾腾. 城市道路交通流量短时预测研究[D]. [硕士论文], 北京交通大学, 2012.
    FAN Tengteng. The research of urban road traffic flow short-term prediction[D]. [Master dissertation], Beijing Jiaotong University, 2012.
    覃明贵. 城市道路交通数据挖掘研究与应用[D]. [博士论文], 复旦大学, 2010.
    QIN Minggui. Research and application on the urban traffic data mining[D]. [Ph.D. dissertation], Fudan University, 2010.
    曹虹. 基于BP神经网络的交通流量预测[D]. [硕士论文], 长安大学, 2012.
    CAO Hong. Traffic flow prediction based on BP neural network[D]. [Master dissertation], Changan University, 2012.
    曹炜. 基于BP神经网络的城市交通流量预测与路口分析[D]. [硕士论文], 昆明理工大学, 2006.
    CAO Wei. The city traffic flow prediction and cross analysis based on BP neural network[D]. [Master dissertation], Kunming University of Science and Technology, 2006.
    尚宁, 覃明贵, 王亚琴, 等. 基于BP神经网络的路口短时交通流量预测方法[J]. 计算机应用与软件, 2006, 23(2): 32-33, 57.
    SHANG Ning, QIN Minggui, WANG Yaqin, et al. A BP neural network method for short-term traffic flow forecasting on crossroads[J]. Computer Applications and Software, 2006, 23(2): 32-33, 57.
    翟敏. 极限学习机的自适应网络结构选择方法研究[D]. [硕士论文], 西北大学, 2014.
    ZHAI Min. Research on adaptive network structure selection method for extreme learning machine[D]. [Master dissertation], Northwest University, 2014.
    甘露. 极限学习机的研究与应用[D]. [硕士论文], 西安电子科技大学, 2014.
    GAN Lu. Research and application of extreme learning machine[D]. [Master dissertation], Xidian University, 2014.
    王智慧. BP神经网络和ELM算法研究[D]. [硕士论文], 中国计量学院, 2012.
    WANG Zhi-hui. Research on BP neural networks and ELM Algorithms[D]. [Master dissertation], China Jiliang University, 2012.
    张一. 基于卡尔曼滤波的短时交通流量预测模型研究[D]. [硕士论文], 沈阳工业大学, 2014.
    ZHANG Yi. Research of short-term traffic volume prediction based on kalman filtering[D]. [Master dissertation], Shenyang University of Technology, 2014.
    罗向龙. 交通流量经验模态分解与神经网络短时预测方法[J]. 计算机工程与应用, 2010, 46(26): 212-214. doi: 10.3778/j.issn. 1002-8331.2010.26.066.
    LUO Xianglong. Short-term traffic flow prediction method based on EMD and artificial neural network[J]. Computer Engineering and Applications, 2010, 46(26): 212-214. doi: 10.3778/j.issn.1002-8331.2010.26.066.
    沈永增. 基于混沌粒子群优化小波神经网络的短时交通流预测[J]. 计算机应用与软件, 2014, 31(6): 84-87. doi: 10.3969 /j.issn.1000-386x.2014.06.024.
    SHEN Yongzeng. Short-time traffic flow forecast based on WNN optimised by CPSO[J]. Computer Applications and Software, 2014, 31(6): 84-87. doi: 10.3969/j.issn.1000-386x. 2014.06.024.
    朱征宇. 一种结合SVM与卡尔曼滤波的短时交通流预测模型[J]. 计算机科学, 2013, 40(10): 248-251.
    ZHU Zhengyu. Short-term traffic flow forecasting model combining SVM and Kalman filtering[J]. Computer Science, 2013, 40(10): 248-251.
    TCHRAKIAN T T, BASU B, and OMAHONY M. Real-time traffic flow forecasting using spectral analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 519-526.
    CHEN Syuanyi and CHOU Weiyao. Short-term traffic flow prediction using EMD-based recurrent Hermite neural network approach[C]. 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, 2012: 1821-1826.
    CHAN K Y, DILLON T S, SINGH J, et al. Neural- network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg- Marquardt algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 644-654.
    XU Yanyan, KONG Qingjie, and LIU Yuncai. Short-term traffic volume prediction using classification and regression trees[C]. IEEE Intelligent Vehicles Symposium(IV), Gold Coast, 2013: 493-498.
    WILLIAMS B M. Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process[D]. [Ph.D. dissertation], University of Virginia, 1999: 243-246.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1764) PDF downloads(981) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return