Advanced Search
Volume 38 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
WU Yanbo, FANG Xiaofang, ZHU Min. Symbol-variance Feedback Equalizer for Turbo Equalization[J]. Journal of Electronics & Information Technology, 2016, 38(3): 694-699. doi: 10.11999/JEIT150825
Citation: WU Yanbo, FANG Xiaofang, ZHU Min. Symbol-variance Feedback Equalizer for Turbo Equalization[J]. Journal of Electronics & Information Technology, 2016, 38(3): 694-699. doi: 10.11999/JEIT150825

Symbol-variance Feedback Equalizer for Turbo Equalization

doi: 10.11999/JEIT150825
Funds:

The National Natural Science Foundation of China (61471351), The National 863 Program of China (2009AA 093301)

  • Received Date: 2015-07-09
  • Rev Recd Date: 2015-12-08
  • Publish Date: 2016-03-19
  • A novel Symbol-Variance Feedback Equalizer (SVEF) algorithm is proposed to reduce the computational complexity of the equalizer in Turbo equalization. The derivation of the algorithm is based on the Taylor expansion of the Linear Minimum Mean Squared Error (LMMSE) estimation function. In the proposed scheme, the initial estimates are obtained from the time-invariant equalizer, then the estimates are weighted by the a priori symbol variances and finally filtered by a time-invariant filter to obtain better estimates. As the time-variant a priori symbol variances are utilized, the performance of the proposed equalizer is much closer to that of the exact MMSE linear equalizer. Simulation results show that the Signal-to-Noise Ratio (SNR) loss of the proposed scheme in Proakis C channel is reduced to 0.17 dB from 0.83 dB compared to the various time-invariant MMSE Turbo equalization, and its computational complexity can be reduced to logarithmical order by implementation based on the fast Fourier transform.
  • loading
  • DOUILLARD C, JEZEQUEL M, BERROU C, et al. Iterative correction of intersymbol interference: Turbo- equalization[J]. European Transactions on Telecommunications and Related Technologies, 1995, 6(5): 507-511. doi: 10.1002/ett.4460060506.
    TUCHLER M, KOETTER R, and SINGER A C. Turbo equalization: principles and new results[J]. IEEE Transactions on Communications, 2002, 50(5): 754-767. doi: 10.1109/TCOMM.2002.1006557.
    TUCHLER M, SINGER A C, and KOETTER R. Minimum mean squared error equalization using a priori information[J]. IEEE Transactions on Signal Processing, 2002, 50(3): 673-683. doi: 10.1109/78.984761.
    LOPES R R. Iterative estimation, equalization and decoding[D]. [Ph.D. dissertation], Georgia Institute of Technology, 2003.
    TUCHLER M and SINGER A C. Turbo equalization: An overview[J]. IEEE Transactions on Information Theory, 2011, 57(2): 920-952. doi: 10.1109/TIT.2010.2096033.
    GUO Q and HUANG D. Concise representation for the soft-in soft-out LMMSE detector[J]. IEEE Communications Letters, 2011, 15(5): 566-568. doi: 10.1109/LCOMM.2011. 032811.102073.
    LAOT C, GLAVIEUX A, and LABAT J. Turbo equalization: adaptive equalization and channel decoding jointly optimized[J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1744-1752. doi: 10.1109/ 49.947038.
    STOJANOVIC M and PREISIG J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84-89. doi: 10.1109/MCOM.2009.4752682.
    SINGER A C, NELSON J K, and KOZAT S S. Signal processing for underwater acoustic communications[J]. IEEE Communications Magazine, 2009, 47(1): 90-96. doi: 10.1109/ MCOM.2009.4752683.
    许浩, 朱敏, 武岩波. 一种水声通信中的多阵元Turbo均衡算法[J]. 电子与信息学报, 2014, 36(6): 1465-1471. doi: 10.3724/SP.J.1146. 2013.01027.
    XU Hao, ZHU Min, and WU Yanbo. An algorithm of multi-array Turbo equalization of underwater acoustic communication[J]. Journal of Electronics Information Technology, 2014, 36(6): 1465-1471. doi: 10.3724/SP.J.1146. 2013.01027.
    LOU H A and XIAO C S. Soft-decision feedback Turbo equalization for multilevel modulations[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 186-195. doi: 10.1109/TSP.2010.2083656.
    VOGELBRUCH F and HAAR S. Low complexity Turbo equalization based on soft feedback interference cancelation [J]. IEEE Communications Letters, 2005, 9(6): 586-588. doi: 10.1109/LCOMM.2005.07016.
    窦高奇, 高俊, 陶伟, 等. 基于序列检测的块判决辅助Turbo均衡器[J]. 电子与信息学报, 2009, 31(9): 2152-2156.
    DOU Gaoqi, GAO Jun, TAO Wei, et al. Sequence-based block decision-aided equalizer for Turbo equalization[J]. Journal of Electronics Information Technology, 2009, 31(9): 2152-2156.
    KIM K, KALANTAROVA N, KOZAT S S, et al. Linear MMSE-optimal Turbo equalization using context trees[J]. IEEE Transactions on Signal Processing, 2013, 61(12): 3041-3055. doi: 10.1109/TSP.2013.2256899.
    杨晓霞, 王海斌, 汪俊, 等. 水声通信中基于信道辨识的盲Turbo均衡方法[J]. 应用声学, 2015, 34(2): 125-134.
    YANG Xiaoxia, WANG Haibin, WANG Jun, et al. Blind Turbo equalization based on channel identification for underwater acoustic communications[J]. Journal of Applied Acoustics, 2015, 34(2): 125-134.
    张冬玲, 杨勇, 李静, 等. 基于Turbo均衡和信道估计的单通道盲信号恢复算法[J]. 通信学报, 2014, 35(1): 47-61.
    ZHANG Dongling, YANG Yong, LI Jing, et al. Blind data recovery of single-channel mixed signals based on Turbo equalization and channel estimation[J]. Journal of Chinese Institute of Communications, 2014, 35(1): 47-61.
    PROAKIS J G and MANOLAKIS D G. Digital Signal Processing: Principles, Algorithms and Applications[M]. 4th ed, New Jersey: Prentice-Hall, 2007.
    PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed, New York: McGraw-Hill, 2008: 640-672.
    LEE S J, SINGER A C, and SHANBHAG N R. Linear Turbo equalization analysis via BER transfer and EXIT charts[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2883-2897. doi: 10.1109/TSP.2005.850375.
    MOVAHEDIAN A and MCGUIRE M. On the capacity of iteratively estimated channels using LMMSE estimators[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 97-107. doi: 10.1109/TVT.2014.2320928.
    钟凯, 彭华, 葛临东. 基于Rimoldi分解的连续相位调制信号Turbo频域均衡算法[J]. 电子与信息学报, 2014, 36(5): 1190-1195. doi: 10.3724/SP.J.1146.2013.00990.
    ZHONG Kai, PENG Hua, and GE Lindong. Turbo frequency domain equalization algorithm based on Rimoldi decomposition for continuous phase modulation signals[J]. Journal of Electronics Information Technology, 2014, 36(5): 1190-1195. doi: 10.3724/SP.J.1146.2013.00990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1653) PDF downloads(408) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return