Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
DANG Xiaoyu, LI Aming, YU Xiangbin. Spatial Spectrum Based Spectrum Sensing Algorithm and Performance Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1179-1185. doi: 10.11999/JEIT150823
Citation: DANG Xiaoyu, LI Aming, YU Xiangbin. Spatial Spectrum Based Spectrum Sensing Algorithm and Performance Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1179-1185. doi: 10.11999/JEIT150823

Spatial Spectrum Based Spectrum Sensing Algorithm and Performance Analysis

doi: 10.11999/JEIT150823
Funds:

The National Natural Science Foundation of China (61172078, 61201208), The State Education Ministry Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars and the Fundamental Research Funds for the Central Universities (NS2014038), The Foundation of Graduate Innovation Center in NUAA (kfjj20150404)

  • Received Date: 2015-07-09
  • Rev Recd Date: 2015-12-02
  • Publish Date: 2016-05-19
  • Spectrum sensing algorithms based on eigenvalue or spectral density usually use the Gaussian approximated distribution and Tracy-Widom distribution to analyze the test statistic with the presence of the primary user or not respectively, but it is hard to find the analysis expression with unified form. In this paper, a spectrum sensing algorithm is proposed based on spatial spectrum density ratio using a Uniform Linear Array (ULA), and a unified expression for the distribution of test statistic is proposed using the latest research results of order statistics. In this algorithm, the test statistic is established using the maximum and minimum values of the discrete spatial spectrum density. Simulation results show that the performance of the proposed algorithm is about 1.7 dB better than the Maximum-Minimum Eigenvalue (MME) ratio algorithm with the detection probability equal to 0.9. At the same time, the results also verify the accuracy of the theoretical distribution of the test statistic.
  • loading
  • MITOLA J and MAGUIRE G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18. doi: 10.1109/98.788210.
    HATTAB G and IBNKAHALA M. Multiband spectrum access: great promises for future cognitive radio networks[J]. Proceedings of the IEEE, 2014, 102(3): 282-306. doi: 10.1109/ JPROC.2014.2303977.
    HONG Xuemin, WANG Jing, WANG Chengxiang, et al. Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off[J]. IEEE Communications Magazine, 2014, 52(7): 46-53. doi: 10.1109/MCOM.2014.6852082.
    LPEZ-BENTEZ M. Sensing-based spectrum awareness in cognitive radio: challenges and open research problems[C]. International Symposium on Communication Systems, Networks Digital Signal Processing, Manchester, 2014: 459-464. doi: 10.1109/CSNDSP.2014.6923873.
    ZHANG Rui, TENG Joonlim, LIANG Yingchang, et al. Multi-antenna based spectrum sensing for cognitive radios: a GLRT approach[J]. IEEE Transactions on Communications, 2010, 58(1): 84-88. doi: 10.1109/TCOMM.2010.01.080158.
    TANDRA R and SAHAI A. SNR walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 4-17. doi: 10.1109/JSTSP.2007.914879.
    赵晓晖, 李晓燕. 认知无线电中基于阵列天线和协方差矩阵的频谱感知算法[J]. 电子与信息学报, 2014, 36(7): 1693-1698. doi: 10.3724/SP.J.1146.2013.01057.
    ZHAO Xiaohui and LI Xiaoyan. Spectrum sensing algorithm in cognitive radio based on array antenna and covariance matrix[J]. Journal of Electronics Information Technology, 2014, 36(7): 1693-1698. doi: 10.3724/SP.J.1146.2013.01057.
    CHOPRA R, GHOSH D, and MEHRA D K. Spectrum sensing for cognitive radios based on space-time FRESH filtering[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3903-3913. doi: 10.1109/TWC.2014.2314125.
    ZENG Yonghong and LIANG Yingchang. Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793. doi: 10.1109/TCOMM.2009.06.070402.
    LIU Chang and JIN Minglu. Maximum-minimum spatial spectrum detection for cognitive radio using parasitic antenna arrays[C]. IEEE/CIC International Conference on Communications, Shanghai, 2014: 365-369. doi: 10.1109/ ICCChina.2014.7008303.
    LU W and TIRKKONEN O. Spectrum sensing with Gaussian approximated eigenvalue ratio based detection[C]. International Symposium on Wireless Communication Systems, York, 2010: 961-965. doi: 10.1109/ISWCS.2010. 5624271.
    PILLAI S U and BURRUS C S. Array Signal Processing[M]. New York: Springer, 1989: 8-45.
    KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. New Jersey: Prentice Hall, 1998: 33-41.
    CHAN R H and NG M K. Conjugate gradient methods for Toeplitz systems[J]. SIAM Review, 1996, 38(3): 427-482.
    LI Tong and TANG Yinhui. Frequency estimation based on modulation FFT and MUSIC algorithm[C]. Pervasive Computing Signal Processing and Applications, Harbin, 2010: 525-528. doi: 10.1109/PCSPA.2010.132.
    MADANAYAKE A, WIJENAYAKE C, BELOSTOTSKI L, et al. An overview of multi-dimensional RF signal processing for array receivers[C]. Moratuwa Engineering Research Conference, Moratuwa, 2015: 255-259. doi: 10.1109/ MERCon.2015.7112355.
    ARNOLD B C, BALAKRISHNAN N, and NAGARAJA H N. A First Course in Order Statistics[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2008: 16-21.
    GNGR M, BULUT Y, andALIK S. Distributions of order statistics[J]. Applied Mathematical Sciences, 2009, 3(16): 795-802.
    GNGR M. On joint distributions of order statistics from innid variables[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2012, 35(1): 215-225.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1456) PDF downloads(454) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return