Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
SONG Wenqing, WANG Yinghua, LIU Hongwei. An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808
Citation: SONG Wenqing, WANG Yinghua, LIU Hongwei. An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808

An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image

doi: 10.11999/JEIT150808
Funds:

The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD-201156), The Fundamental Research Funds for the Central Universities

  • Received Date: 2015-07-08
  • Rev Recd Date: 2015-11-20
  • Publish Date: 2016-05-19
  • Assuming theG0 distribution clutter background, an automatic block-to-block censoring CFAR (ABC-CFAR) detector is proposed based on VI-CFAR for high resolution SAR image in nonhomogeneous environments. Firstly the Variability Index (VI) statistic is used to censor the blocks in the local reference window in order to reject the non-homogeneous ones in which there exists interfering target samples. Then the Mean Ratio (MR) statistic is utilized to select and combine the homogeneous blocks which have the same distribution, in order to solve background clutter censoring problem in clutter edge situation. At last, with the selected blocks, the distribution parameters of the background clutter are estimated, and then the binary detection is implemented in the Block Under Test (BUT). Using the real SAR image data including ground vehicle targets, the experimental results show that the proposed ABC-CFAR detector has robust detection performance and false alarm regulation property in multi-target and clutter edge nonhomogeneous environment.
  • loading
  • 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1-9.
    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1-9.
    张小强, 熊博莅, 匡纲要. 一种基于变化检测技术的 SAR 图像舰船目标鉴别方法[J]. 电子与信息学报, 2015 , 37(1): 63-70. doi: 10.11999/JEIT140143.
    ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    WANG Yinghua and LIU Hongwei. PolSAR ship detection based on superpixel-level scattering mechanism distribution features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (8): 1780-1784. doi: 10.1109/LGRS.2015.2425873.
    El-Darymli K, McGuire P, Power D, et al. Target detection in synthetic aperture radar imagery: a state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-35. doi: 10.1117/1.JRS.7.071598.
    Mishne G, Talmon R, and Cohen I. Graph-based supervised automatic target detection[J]. IEEE Transactions on Geoscience and Remote Sensing,  2015, 53 (5): 2738-2754. doi: 10.1109/TGRS.2014.2364333.
    HOU Biao, CHENG Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (4): 811-815.
    ZHANG Yangrui, GAO Meiguo, and LI Yunjie. Performance analysis of typical mean-level CFAR detectors in the interfering target background[C]. IEEE 9th Conference on (Industrial Electronics and Applications) ICIEA, Hangzhou, 2014: 1045-1048.
    Rickard J T and Dillard G M. Adaptive detection algorithms for multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(4): 338-343. doi: 10.1109/TAES.1977.308466.
    Ghandhi P P and Kassam S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427-445.
    Himonas S D and Barkat M. Automatic censored CFAR detection for non-homogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 286-304.
    Smith M E and Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837-847. doi: 10.1109/ 7.869503.
    Farrouki A and Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments[J]. IEE Proceedings of Radar, Sonar and Navigation, 2005, 152(1): 43-51. doi: 10.1049/ ip-rsn: 20045006.
    Zaimbashi A and Norouzi Y. Automatic dual censoring cell averaging CFAR detector in nonhomogeneous environments [J]. Signal Processing, 2008, 88(11): 2611-2621. doi: 10.1016/j. sigpro.2008.04.016.
    Zaimbashi A. An adaptive cell averaging-based CFAR detector for interfering targets and clutter-edge situations[J]. Digital Signal Processing, 2014, 31: 59-68. doi: 10.1016/j. dsp.2014.04.005.
    Almarshad M N, Barkat M, and Alshebeili S A. A monte carlo simulation for two novel automatic censoring techniques of radar interfering targets in log-normal clutter[J]. Signal Processing, 2008, 88(3): 719-732. doi: 10.1016/j.sigpro.2007. 09.013.
    Chabbi S, Laroussi T, and Barkat M. Performance analysis of dual automatic censoring and detection in heterogeneous Weibull clutter: A comparison through extensive simulations [J]. Signal Processing, 2013, 99(11): 2879-2893. doi: j.sigpro. 2013.03.026.
    Frery A C, Muller H J, Yanasse C C F, et al. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 648-659. doi: 10.1109/36.581981.
    GAO Gui, LIU Li, ZHAO Lingjun, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. doi: 10.1109/TGRS.2008.2006504.
    YU Wenyi, WANG Yinghua, LIU Hongwei, et al. Superpixel- based CFAR target detection for high-resolution SAR images [J]. IEEE Geoscience and Remote Sensing Letters, 2016, pp(99): 1-5. doi: 10.1109/LGRS.2016.2540809.
    Salazar J C. II. Detection schemes for synthetic aperture radar imagery based on a beta prime statistical model[D]. [Ph.D. dissertation], Florida University, 1999.
    Kreithen D E, Halversen S D, and Owirka G J. Discriminating targets from clutter[J]. The Lincoln Laboratory Journal, 1993, 6(1): 25-51.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1638) PDF downloads(701) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return