Advanced Search
Volume 38 Issue 5
May  2016
Turn off MathJax
Article Contents
ZHANG Suling, XI Feng, CHEN Shengyao, LIU Zhong. A Real-time Reconstruction Scheme of Pulsed Radar Echoes with Quadrature Compressive Sampling[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1064-1071. doi: 10.11999/JEIT150767
Citation: ZHANG Suling, XI Feng, CHEN Shengyao, LIU Zhong. A Real-time Reconstruction Scheme of Pulsed Radar Echoes with Quadrature Compressive Sampling[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1064-1071. doi: 10.11999/JEIT150767

A Real-time Reconstruction Scheme of Pulsed Radar Echoes with Quadrature Compressive Sampling

doi: 10.11999/JEIT150767
Funds:

The National Natural Science Foundation of China (61171166, 61401210, 61571228), China Postdoctoral Science Foundation (2014M551597)

  • Received Date: 2015-06-29
  • Rev Recd Date: 2016-02-22
  • Publish Date: 2016-05-19
  • Quadrature Compressive Sampling (QuadCS) is an efficient Analog-to-Information Conversion (AIC) system to sample band-pass analog signals at sub-Nyquist rates. The QuadCS can be widely used in radar and communication systems to acquire sub-Nyquist samples of inphase and quadrature components. However, for wideband or ultra-wideband pulsed radars, it is often impractical to reconstruct Nyquist samples of full-range echoes in real-time because of huge storage and computational loads. Based on the characteristics of QuadCS system, an approximate scheme is proposed to transform the QuadCS measurement matrix into a matrix with a special banded structure. With the banded matrix, a segment-sliding reconstruction method is adopted to perform real-time reconstruction. Simulation results show that with a reasonable approximation of the measurement matrix, the proposed reconstruction scheme achieves nearly optimal reconstruction performance with a significant reduction of data storage and computational time.
  • loading
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
    CANDS E J and TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/TIT.2006.885507.
    CANDS E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979.
    YOO J, TURNES C, NAKAMURA E B, et al. A compressed sensing parameter extraction platform for radar pulse signal acquisition[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 626-638. doi: 10.1109/JETCAS.2012.2214634.
    BARANSKY E, ITZHAK G, WAGNER N, et al. Sub- Nyquist radar prototype: hardware and algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 809-822. doi: 10.1109/TAES.2014.120475.
    BAR-ILAN O and ELDAR Y C. Sub-Nyquist radar via Doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811. doi: 10.1109/TSP.2014.2304917.
    LIU C, XI F, CHEN S, et al. A pulse-Doppler processing scheme for quadrature compressive sampling radar[C]. Proceedings of the 19th International Conference on Digital Signal Processing (DSP), Hong Kong, China, 2014: 676-681. doi: 10.1109/ICDSP.2014.6900750.
    LIU C, XI F, CHEN S, et al. Pulse-Doppler signal processing with quadrature compressive sampling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1217-1230. doi: 10.1109/TAES.2014.130475.
    KIROLOS S, LASKA J, WAKIN M, et al. Analog-to- information conversion via random demodulation[C]. Proceedings of the IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software (DCAS), Richardson, TX, USA, 2006: 71-74. doi: 10.1109/DCAS.2006. 321036.
    TROPP J A, LASKA J N, DUARTE M F, et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1): 520-544. doi: 10.1109/TIT.2009.2034811.
    BECKER S R. Practical compressed sensing: modern data acquisition and signal processing[D]. [Ph.D. dissertation], California Institute of Technology, Pasadena, CA, USA, 2011.
    MISHALI M, ELDAR Y C, and ELRON A J. Xampling: signal acquisition and processing in union of subspaces[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4719-4734. doi: 10.1109/TSP.2011.2161472.
    XI F, CHEN S, and LIU Z. Quadrature compressive sampling for radar echo signals[C]. Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2011: 1-5. doi: 10.1109/ WCSP.2011.6096838.
    XI F, CHEN S, and LIU Z. Quadrature compressive sampling for radar signals[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2787-2802. doi: 10.1109/TSP.2014.2315168.
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    YIN W, OSHER S, GOLDFARB D, et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168. doi: 10.1137/070703983.
    WU Q, ZHANG Y D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 3375-3379. doi: 10.1109/ICASSP.2014.6854226.
    TROPP J A and WRIGHT S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010, 98(6): 948-958. doi: 10.1109/JPROC.2010. 2044010.
    PETROS T B and ASIF M S. Compressive sensing for streaming signals using the streaming greedy pursuit[C]. Proceedings of the Military Communications Conference (MILCOM), San Jose, CA, USA, 2010: 1205-1210. doi: 10.1109/ MILCOM.2010.5680110.
    ASIF M S and ROMBERG J. Sparse recovery of streaming signals using L1 homotopy[J]. IEEE Transactions on Signal Processing, 2014, 62(16): 4209-4223. doi: 10.1109/TSP.2014. 2328981.
    QIN S, ZHANG Y D, WU Q, et al. Large-scale sparse reconstruction through partitioned compressive sensing[C]. Proceedings of the 19th International Conference on Digital Signal Processing, Hong Kong, China, 2014: 837-840. doi: 10.1109/ICDSP.2014.6900784.
    HERMAN M A and STROHMER T. General deviants: an analysis of perturbations in compressed sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 342-349. doi: 10.1109/JSTSP.2009.2039170.
    HERMAN M A and NEEDELL D. Mixed operators in compressed sensing[C]. Proceedings of the 44th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 2010: 1-6. doi: 10.1109/CISS. 2010. 5464909.
    DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410. doi: 10.1109/TSP. 2012.2222377.
    VAUGHAN R G, SCOTT N L, and WHITE D R. The theory of bandpass sampling[J]. IEEE Transactions on Signal Processing, 1991, 39(9): 1973-1984. doi: 10.1109/78.134430.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1372) PDF downloads(364) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return