Advanced Search
Volume 38 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
WANG Wei, WANG Chunping, FU Qiang, XU Yan. Real-time Superpixels Based Tracking Method[J]. Journal of Electronics & Information Technology, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705
Citation: WANG Wei, WANG Chunping, FU Qiang, XU Yan. Real-time Superpixels Based Tracking Method[J]. Journal of Electronics & Information Technology, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705

Real-time Superpixels Based Tracking Method

doi: 10.11999/JEIT150705
Funds:

The National Natural Science Foundation of China (61141009)

  • Received Date: 2015-06-08
  • Rev Recd Date: 2015-12-04
  • Publish Date: 2016-03-19
  • Target appearance model is crucial for tracking. In this paper, a Real-time SuperPixels based Tracking (RSPT) method is proposed in a tracking-by-detection framework, by investigating mid-level vision cue superpixels. Firstly, a discriminative appearance model is constructed relying superpixels feature and K-Nearest Neighbor (KNN) learning method. Then the tracking problem is posed by computing a confidence map, and detecting the best target station by maximizing an object location likelihood function. The integral image data structure is adopted for fast detection, innovatively. Implemented in MATLAB without code optimization, the proposed tracker runs at 19 frames per second on an i5 laptop. Extensive experimental results on challenging sequences show that the proposed algorithm performs favorably against some state-of-the-art methods in terms of accuracy and robustness.
  • loading
  • WU Yi, LIM Jongwoo, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1354-1362.
    陈思, 苏松志, 李绍滋, 等. 基于在线半监督boosting的协同训练目标跟踪算法[J]. 电子与信息学报, 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
    CHEN Si, SU Songzhi, LI Shaozi, et al. A novel co-training object tracking algorithm based on online semi-supervised boosting[J]. Journal of Electronics Information Technology, 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
    AVIDAN S. Ensemble tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 494-501.
    BABENKO B, BELONGIE S, and YANG M H. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1003-1010.
    ZHANG Kaihua, ZHANG Lei, and YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
    FEDERICO P and BIMBO A D. Object tracking by oversampling local features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12): 2538-2551.
    ROSS D, LIM J, LIN R, et al. Incremental learning for robust visual tracking[J]. International Journal of Compute Vision, 2008, 77(1): 125-141.
    COMANICIU D, RAMESH V, and MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 564-577.
    KWON J and LEE K M. Visual tracking decomposition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1269-1276.
    MEI X and LING H. Robust visual tracking using l1 minimization[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 1436-1443.
    薛模根, 朱虹, 袁广林. 基于在线判别式字典学习的鲁棒视觉跟踪[J]. 电子与信息学报, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    XUE Mogen, ZHU Hong, and YUAN Guanglin. Robust visual tracking based on online discrimination dictionary learning [J]. Journal of Electronics Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    ACHANTA R, SHAJI A, SMITH K, et al. Slic superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    YANG Fan, LU Huchuan, and YANG M H. Robust superpixel tracking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1639-1651.
    REN X and MALIK J. Tracking as repeated figure/ground segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1-8.
    VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2001: 511-518.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 798-805.
    GRABNER H, GRABNER M, and BISCHOF H. Real-time tracking via on-line boosting[C]. British Machine Vision Conference, Edinburgh, England, 2006: 47-56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1481) PDF downloads(748) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return