Citation: | CHEN Sugen, WU Xiaojun. Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition[J]. Journal of Electronics & Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693 |
CORTES C and VAPNIK V N. Support vector machine[J]. Machine Learning, 1995, 20(3): 273-297.
|
OSUNA E, FREUND R, and GIROSI F. Training support vector machines: an application to face detection[C]. Proceedings of Computer Vision and Pattern Recognition, San Juan, 1997: 130-136.
|
ISA D, LEE L H, KALLIMANI V P, et al. Text document preprocessing with the Bayes formula for classification using the support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(9): 1264-1272.
|
BOSER B, GUYON I, and VAPNIK V N. A training algorithm for optimal margin classifiers[C]. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, New York, 1992: 144-152.
|
OSUNA E, FREUND R, and GIROSI F. An improved training algorithm for support vector machines[C]. Proceedings of IEEE Workshop on Neural Networks for Signal Processing, New York, USA, 1997: 276-285.
|
PLATT J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization[M]. Advances in Kernel Methods: Support Vector Machines, Cambridge, MA, MIT Press, 1998: 41-65.
|
张战成, 王士同, 邓赵红, 等. 支持向量机的一种快速分类算法[J]. 电子与信息学报, 2011, 33(9): 2181-2186.
|
ZHANG Zhancheng, WANG Shitong, DENG Zhaohong, et al. Fast decision using SVM for incoming samples[J]. Journal of Electronics Information Technology, 2011, 33(9): 2181-2186.
|
MANGASARIAN O L and WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
|
JAYADEVA, KHEMCHANDAI R, and CHANDRA S. Twin support vector machine classification for pattern classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
|
SHAO Y H, ZHANG C H, WANGX B, et al. Improvements on twin support vector machines[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 962-968.
|
PENG X J. TPMSVM: A novel twin parametric-margin support vector machine for pattern recognition[J]. Pattern Recognition, 2011, 44(10): 2678-2692.
|
QI Z Q, TIAN Y J, and SHI Y. Robust twin support vector machine for pattern classification[J]. Pattern Recognition, 2013, 46(1): 305-316.
|
SHAO Y H, DENG N Y, and CHEN W J. A proximal classifier with consistency[J]. Knowledge-Based Systems, 2013, 49: 171-178.
|
Tian Y J, Qi Z Q, Ju X C, et al. Nonparallel support vector machines for pattern classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1067-1079.
|
DING S F, HUA X P, and YU J Z. An overview on nonparallel hyperplane support vector machine algorithms[J]. Neural Computing and Applications, 2014, 25(5): 975-982.
|
王娜, 李霞. 基于类加权的双支持向量机[J]. 电子与信息学报, 2007, 29(4): 859-862.
|
WANG Na and LI Xia. A new dual support vector machine based on class-weighted[J]. Journal of Electronics Information Technology, 2007, 29(4): 859-862.
|
BOTTOU L, CORTES C, DENKER J S, et al. Comparison of classifier methods: a case study in handwritten digit recognition[C]. Proceedings of IEEE International Conference on Pattern Recognition, Paris, 1994: 77-82.
|
KRE?EL U. Pairwise Classification and Support Vector Machines[M]. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, MIT Press, 1999: 255-268.
|
CRAMMER K and SINGER Y. On the learn ability and design of output codes for multi-class problems[J]. Machine Learning, 2002, 47(2/3): 201-233.
|
XU Y T, GUO R, and WANG L S. A twin multi-class classification support vector machine[J]. Cognitive Computation, 2013, 5(4): 580-588.
|
NASIRI J A, CHARKARI N M, and JALILI S. Least squares twin multi-class classification support vector machine[J]. Pattern Recognition, 2015, 48(3): 984-992.
|
PARLETT B. The Symmetric Eigenvalue Problem[M]. Upper Saddle River, NJ, USA, SIAM Press, 1998: 61-80.
|
BLAKE C L and MERZ C J. UCI repository of machine learning databases[R]. Irvine, CA: Department of Information and Computers Science, University of California, 1998.
|
CHANG C and LIN C. LIBSVM: A library for support vector machine[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
|
1. | 张盛峰,袁强,陈会丹,黄胜. EONs中一种混合路径专有保护算法. 光通信研究. 2021(02): 20-25 . ![]() | |
2. | 胡竣涛,时小虎,马德印. 基于均值漂移和遗传算法的护工调度算法. 广西师范大学学报(自然科学版). 2021(03): 27-39 . ![]() | |
3. | 巨子琪,兰宏伟,宰晨光. 轨道交通车辆踏面制动闸调器螺杆连接优化研究. 自动化与仪器仪表. 2020(12): 70-74 . ![]() | |
4. | 赵必游,张善辉,王进帅. 配电系统弹性光网络频谱整理优化算法. 电信科学. 2019(02): 43-50 . ![]() | |
5. | 黄正鹏,王力,张仕学,余廷忠,张起荣. 基于传统遗传和数据压缩算法的冗余光纤数据存储优化. 激光杂志. 2019(03): 135-139 . ![]() | |
6. | 程光德,肖瑜. 基于用户满意度的光网络数据路由机制设计. 激光杂志. 2019(04): 118-121 . ![]() | |
7. | 王鹏辉,张宁,肖明明. 基于节点重要度的路由选择与频谱分配算法. 计算机工程与应用. 2019(13): 106-111+259 . ![]() | |
8. | 马学森,朱建,谈杰,唐昊,周江涛. 多头绒泡菌预处理的改进Q学习算法求解最短路径问题. 电子测量与仪器学报. 2019(05): 148-157 . ![]() | |
9. | 施达雅,余庚. 弹性光网络中碎片问题的研究. 光通信技术. 2018(02): 16-19 . ![]() | |
10. | 田建勇,石林江. 基于Kalman算法的光纤网络流量在线预测模型. 激光杂志. 2018(09): 110-114 . ![]() | |
11. | 刘焕淋,胡浩,熊翠连,陈勇,向敏,马跃. 基于时频联合碎片感知的资源均衡虚拟光网络映射算法. 电子与信息学报. 2018(10): 2345-2351 . ![]() | |
12. | 刘焕淋,张明佳,陈勇,王欣. 频谱可用性和保护带宽共享度感知的弹性光网络生存性多路径策略. 电子与信息学报. 2017(10): 2472-2478 . ![]() | |
13. | 李汪丽. 通信链接无线终端资源传输路径目标识别仿真. 计算机仿真. 2017(10): 177-180 . ![]() | |
14. | 魏星. 基于改进人工鱼群算法的光网络最优环路径搜索研究. 计算机与数字工程. 2017(04): 650-654 . ![]() |