Advanced Search
Volume 38 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
Liu Zheng-jun, Zou Xi, Ran Chong-sen. Twice-Correlate Rapid Acquisition Algorithm for Synchronization of PRACH Preamble in WCDMA Reverse Link[J]. Journal of Electronics & Information Technology, 2004, 26(8): 1262-1268.
Citation: CHEN Sugen, WU Xiaojun. Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition[J]. Journal of Electronics & Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693

Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition

doi: 10.11999/JEIT150693
Funds:

The National Natural Science Foundation of China (61373055, 61103128), 111 Project of Chinese Ministry of Education (B12018), Industrial Support Program of Jiangsu Province (BE2012031)

  • Received Date: 2015-06-08
  • Rev Recd Date: 2015-09-17
  • Publish Date: 2016-03-19
  • To deal with the consistency problem of training process and decision process in Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM), an improved version of eigenvalue proximal support vector machine, called IGEPSVM for short is proposed. At first, IGEPSVM for binary classification problem is proposed, and then Multi-IGEPSVM is also presented for multi-class classification problem based on one-versus-rest strategy. The main contributions of this paper are as follows. The generalized eigenvalue decomposition problems are replaced by the standard eigenvalue decomposition problems, leading to simpler optimization problems. An extra parameter is introduced, which can adjust the performance of the model and improve the classification accuracy of GEPSVM. A corresponding multi-class classification algorithm is proposed, which is not studied in GEPSVM. Experimental results on several datasets illustrate that IGEPSVM is superior to GEPSVM in both classification accuracy and training speed.
  • CORTES C and VAPNIK V N. Support vector machine[J]. Machine Learning, 1995, 20(3): 273-297.
    OSUNA E, FREUND R, and GIROSI F. Training support vector machines: an application to face detection[C]. Proceedings of Computer Vision and Pattern Recognition, San Juan, 1997: 130-136.
    ISA D, LEE L H, KALLIMANI V P, et al. Text document preprocessing with the Bayes formula for classification using the support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(9): 1264-1272.
    BOSER B, GUYON I, and VAPNIK V N. A training algorithm for optimal margin classifiers[C]. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, New York, 1992: 144-152.
    OSUNA E, FREUND R, and GIROSI F. An improved training algorithm for support vector machines[C]. Proceedings of IEEE Workshop on Neural Networks for Signal Processing, New York, USA, 1997: 276-285.
    PLATT J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization[M]. Advances in Kernel Methods: Support Vector Machines, Cambridge, MA, MIT Press, 1998: 41-65.
    张战成, 王士同, 邓赵红, 等. 支持向量机的一种快速分类算法[J]. 电子与信息学报, 2011, 33(9): 2181-2186.
    ZHANG Zhancheng, WANG Shitong, DENG Zhaohong, et al. Fast decision using SVM for incoming samples[J]. Journal of Electronics Information Technology, 2011, 33(9): 2181-2186.
    MANGASARIAN O L and WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
    JAYADEVA, KHEMCHANDAI R, and CHANDRA S. Twin support vector machine classification for pattern classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
    SHAO Y H, ZHANG C H, WANGX B, et al. Improvements on twin support vector machines[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 962-968.
    PENG X J. TPMSVM: A novel twin parametric-margin support vector machine for pattern recognition[J]. Pattern Recognition, 2011, 44(10): 2678-2692.
    QI Z Q, TIAN Y J, and SHI Y. Robust twin support vector machine for pattern classification[J]. Pattern Recognition, 2013, 46(1): 305-316.
    SHAO Y H, DENG N Y, and CHEN W J. A proximal classifier with consistency[J]. Knowledge-Based Systems, 2013, 49: 171-178.
    Tian Y J, Qi Z Q, Ju X C, et al. Nonparallel support vector machines for pattern classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1067-1079.
    DING S F, HUA X P, and YU J Z. An overview on nonparallel hyperplane support vector machine algorithms[J]. Neural Computing and Applications, 2014, 25(5): 975-982.
    王娜, 李霞. 基于类加权的双支持向量机[J]. 电子与信息学报, 2007, 29(4): 859-862.
    WANG Na and LI Xia. A new dual support vector machine based on class-weighted[J]. Journal of Electronics Information Technology, 2007, 29(4): 859-862.
    BOTTOU L, CORTES C, DENKER J S, et al. Comparison of classifier methods: a case study in handwritten digit recognition[C]. Proceedings of IEEE International Conference on Pattern Recognition, Paris, 1994: 77-82.
    KRE?EL U. Pairwise Classification and Support Vector Machines[M]. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, MIT Press, 1999: 255-268.
    CRAMMER K and SINGER Y. On the learn ability and design of output codes for multi-class problems[J]. Machine Learning, 2002, 47(2/3): 201-233.
    XU Y T, GUO R, and WANG L S. A twin multi-class classification support vector machine[J]. Cognitive Computation, 2013, 5(4): 580-588.
    NASIRI J A, CHARKARI N M, and JALILI S. Least squares twin multi-class classification support vector machine[J]. Pattern Recognition, 2015, 48(3): 984-992.
    PARLETT B. The Symmetric Eigenvalue Problem[M]. Upper Saddle River, NJ, USA, SIAM Press, 1998: 61-80.
    BLAKE C L and MERZ C J. UCI repository of machine learning databases[R]. Irvine, CA: Department of Information and Computers Science, University of California, 1998.
    CHANG C and LIN C. LIBSVM: A library for support vector machine[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
  • Cited by

    Periodical cited type(14)

    1. 张盛峰,袁强,陈会丹,黄胜. EONs中一种混合路径专有保护算法. 光通信研究. 2021(02): 20-25 .
    2. 胡竣涛,时小虎,马德印. 基于均值漂移和遗传算法的护工调度算法. 广西师范大学学报(自然科学版). 2021(03): 27-39 .
    3. 巨子琪,兰宏伟,宰晨光. 轨道交通车辆踏面制动闸调器螺杆连接优化研究. 自动化与仪器仪表. 2020(12): 70-74 .
    4. 赵必游,张善辉,王进帅. 配电系统弹性光网络频谱整理优化算法. 电信科学. 2019(02): 43-50 .
    5. 黄正鹏,王力,张仕学,余廷忠,张起荣. 基于传统遗传和数据压缩算法的冗余光纤数据存储优化. 激光杂志. 2019(03): 135-139 .
    6. 程光德,肖瑜. 基于用户满意度的光网络数据路由机制设计. 激光杂志. 2019(04): 118-121 .
    7. 王鹏辉,张宁,肖明明. 基于节点重要度的路由选择与频谱分配算法. 计算机工程与应用. 2019(13): 106-111+259 .
    8. 马学森,朱建,谈杰,唐昊,周江涛. 多头绒泡菌预处理的改进Q学习算法求解最短路径问题. 电子测量与仪器学报. 2019(05): 148-157 .
    9. 施达雅,余庚. 弹性光网络中碎片问题的研究. 光通信技术. 2018(02): 16-19 .
    10. 田建勇,石林江. 基于Kalman算法的光纤网络流量在线预测模型. 激光杂志. 2018(09): 110-114 .
    11. 刘焕淋,胡浩,熊翠连,陈勇,向敏,马跃. 基于时频联合碎片感知的资源均衡虚拟光网络映射算法. 电子与信息学报. 2018(10): 2345-2351 . 本站查看
    12. 刘焕淋,张明佳,陈勇,王欣. 频谱可用性和保护带宽共享度感知的弹性光网络生存性多路径策略. 电子与信息学报. 2017(10): 2472-2478 . 本站查看
    13. 李汪丽. 通信链接无线终端资源传输路径目标识别仿真. 计算机仿真. 2017(10): 177-180 .
    14. 魏星. 基于改进人工鱼群算法的光网络最优环路径搜索研究. 计算机与数字工程. 2017(04): 650-654 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1422) PDF downloads(433) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return