Advanced Search
Volume 38 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
YU Huai, YANG Wen. A Fast Feature Extraction and Matching Algorithm for Unmanned Aerial Vehicle Images[J]. Journal of Electronics & Information Technology, 2016, 38(3): 509-516. doi: 10.11999/JEIT150676
Citation: YU Huai, YANG Wen. A Fast Feature Extraction and Matching Algorithm for Unmanned Aerial Vehicle Images[J]. Journal of Electronics & Information Technology, 2016, 38(3): 509-516. doi: 10.11999/JEIT150676

A Fast Feature Extraction and Matching Algorithm for Unmanned Aerial Vehicle Images

doi: 10.11999/JEIT150676
Funds:

The National Natural Science Foundation of China (61271401, 91338113)

  • Received Date: 2015-05-04
  • Rev Recd Date: 2016-01-05
  • Publish Date: 2016-03-19
  • Unmanned Aerial Vehicle (UAV) images are characterized by a very high spatial resolution, and consequently by more abundant information of the edge and the texture. The conventional stitching methods, which use Speeded Up Robust Features (SURF) and kd-tree based nearest neighbor matching, are facing with new challenges for processing UAV images. In this paper, a fast feature extraction and matching algorithm is proposed for more efficient stitching of UAV images. Firstly, the Local Difference Binary (LDB) algorithm is used to describe the feature, which could reduce the dimension of feature without sacrificing its discrimination. Then, the Local Sensitive Hash (LSH) is used to replace kd-tree search structure, which achieves nearest neighbor matching more efficiently. Compared with the conventional stitching method, experimental results demonstrate that the proposed method achieves a higher accuracy and greater efficiency, which is more applicable to rapid mapping of UAV images.
  • loading
  • 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报: 信息科学版, 2014, 39(5): 505-513.LI Deren and LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system [J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513. [2] 郭复胜, 高伟. 基于辅助信息的无人机图像批处理三维重建方法[J]. 自动化学报, 2013, 39(6): 834-845.GUO Fusheng and GAO Wei. Batch reconstruction from UAV images with prior information[J]. Acta Automatica Sinica, 2013, 39(6): 834-845.[3] SZELISKI R. Video mosaics for virtual environments [J]. IEEE Computer Graphics and Applications, 1996, 16(2): 22-30.[4] 张宝龙, 李洪蕊, 李丹, 等. 一种针对车载全景系统的图像拼接算法的仿真[J]. 电子与信息学报, 2015, 37(5): 1149-1153. doi: 10.11999/JEIT141185.ZHANG Baolong, LI Hongrui, LI Dan, et al. A simulation of image mosaic algorithm based on vehicle panorama system [J]. Journal of Electronics & Information Technology, 2015, 37(5): 1149-1153. doi: 10.11999/JEIT141185.[5] LOWE D G. Object recognition from local scale-invariant features[C]. IEEE International Conference on Computer Vision, Kerkyra, Corfu, Greece, 1999, 2: 1150-1157.[6] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.[7] BROWN M and LOWE D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73.[8] BAY H, TUYTELAARS T, and VAN Gool L. Surf: Speeded Up Robust Features[C]. European Conference on Computer Vision, Graz, Austria, 2006: 404-417.[9] 颜雪军, 赵春霞, 袁夏. 一种鲁棒的基于图像对比度的局部特征描述方法[J]. 电子与信息学报, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846. YAN Xuejun, ZHAO Chunxia, and YUAN Xia. A robust local feature descriptor based on image contrast[J]. Journal of Electronics & Information Technology, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.[10] SILPA-ANAN C and HARTLEY R. Optimized KD-trees for fast image descriptor matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008: 1-8.[11] MUJA M and LOWE D G. Fast approximate nearest neighbors with automatic algorithm configuration[C]. The International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Lisboa, Portugal, 2009: 331-340.[12] CALONDER M, LEPETIT V, STRECHA C, et al. Brief: binary robust independent elementary features[C]. European Conference on Computer Vision, Hersonissos, Heraklion, Crete, Greece, 2010: 778-792.[13] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2564-2571.[14] LEUTENEGGER S, CHLI M, and SIEGWART R Y. BRISK: binary robust invariant scalable keypoints[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2548-2555.[15] ALAHI A, ORTIZ R, and VANDERGHEYNST P. Freak: fast retina keypoint[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, USA, 2012: 510-517.[16] YANG X and CHENG K T. Local difference binary for ultrafast and distinctive feature description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 188-194.[17] ANDONI A and INDYK P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[J]. Communications of the ACM, 2008, 51(1): 117-122.[18] FISCHLER M A and BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.[19] VIOLA P and JONES M. Robust real-time object detection [J]. International Journal of Computer Vision, 2004, 57(2): 137-154.[20] 沈秋, 李小凡, 孔繁锵, 等. 基于仿射模型的无人机视频实时压缩算法[J]. 电子与信息学报, 2014, 36(12): 2855-2860. doi: 10.3724/SP.J.1146.2014.00080.SHEN Qiu, LI Xiaofan, KONG Fanqiang, et al. A real-time video compression for UAV based on affine model[J]. Journal of Electronics & Information Technology, 2014, 36(12): 2855-2860. doi: 10.3724/SP.J.1146.2014.00080.[21] 李明, 刘欢, 朱欣焰. 一种面向灾害应急的 UAV 影像快速拼接方法[J]. 灾害学, 2012, 27(3): 139-144.LI Ming, LIU Huan, and ZHU Xinyan. Approach to fast mosaic UAV images for disaster emergency[J]. Journal of Catastrophology, 2012, 27(3): 139-144.[22] 易磊, 褚中理, 郑克斌, 等. 面向无人机红外影像拼接的特征提取算法对比研究[J]. 测绘科学技术学报, 2014, 31(6): 608-613.YI Lei, CHU Zhongli, ZHENG Kebin, et al. Feature extraction algorithm for UAV infrared image mosaic[J]. Journal of Geomatics Science and Technology, 2014, 31(6): 608-613.[23] 胡同喜, 牛雪峰, 谭洋, 等. 基于 SURF 算法的无人机遥感影像拼接技术[J]. 测绘通报, 2015, 74(1): 55-58.HU Tongxi, NIU Xuefeng, TAN Yang, et al. Unmanned aerial vehicle images mosaic based on SURF algorithm[J]. Bulletin of Surveying and Mapping, 2015, 74(1): 55-58.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2793) PDF downloads(1683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return