Advanced Search
Volume 37 Issue 12
Jan.  2016
Turn off MathJax
Article Contents
Huang Xiao-hong, Wen Gong-jian. Compensating Method of L-band Radar ISAR Imaging for Ionosphereic Target with High-velocity[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646
Citation: Huang Xiao-hong, Wen Gong-jian. Compensating Method of L-band Radar ISAR Imaging for Ionosphereic Target with High-velocity[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646

Compensating Method of L-band Radar ISAR Imaging for Ionosphereic Target with High-velocity

doi: 10.11999/JEIT150646
Funds:

The National Natural Science Foundation of China (61002025)

  • Received Date: 2015-06-01
  • Rev Recd Date: 2015-09-16
  • Publish Date: 2015-12-19
  • High velocity and Ionosphereic both modulate the phase of low carrier frequency wide-band linearly frequency modulated radar signal , It make the resolution of Inverse SAR (ISAR) image lower. In order to get clean ISAR image, the effect of high velocity and ionosphereic are both must be removed. Firstly, signal model of ionosphereic target with high-velocity are deduced. The high order phase signal parameter estimation method is proposed, using discrete polynomial-phase transform. Motion compensation is done with the estimated values got by this method. Simulation experiments show that the parameters can be estimated right, it can improve the ISAR image deformed by hyper-velocity and ionosphereic.
  • loading
  • 许志伟, 张磊, 邢孟道. 基于特征配准的ISAR图像方位定标方法[J]. 电子与信息学报, 2014, 36(9): 2173-2179.
    Xu Zhi-wei, Zhang Lei, and Xing Meng-dao. A novel cross-rang scaling algorithm for ISAR images based on feature registration[J]. Journal of Electronics Information Technology, 2014, 36(9): 2173-2179.
    徐少坤, 刘记红, 袁翔宇, 等. 基于ISAR图像的中段目标二维几何特征反演方法[J]. 电子与信息学报, 2015, 37(2): 339-345.
    Xu Shao-kun, Liu Ji-hong, Yuan Xiang-yu, et al.. Two dimensional geomtric feature inversion method for midcouse target based on ISAR image[J]. Journal of Electronics Information Technology, 2015, 37(2): 339-345.
    俞翔, 朱岱寅, 张劲东, 等. 基于设计结构化Gram矩阵的ISAR运动补偿方法[J]. 电子学报, 2014, 42(3): 452-461.
    Yu Xiang, Zhu Dai-yin, Zhang Jing-dong, et al.. A motion compensation algorithm based on the designing structured gram matric[J]. Acta Electronica Sinica, 2014, 42(3): 452-461.
    Wang Y and Jiang Y C. Inverse synthetic aperture radar imaging of three-dimensional rotation target based on two-order match fourier transform[J]. IET Signal Processing, 2012, 6(2): 159-169.
    Wang J F and Liu X Z. Improved global range alignment for ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1070-1075.
    刘波, 李道京, 李烈辰. 基于压缩感知的干涉逆合成孔径雷达成像研究[J]. 电波科学学报, 2014, 29(1): 19-25.
    Liu Bo, Li Dao-jing, and Li Lie-chen. Moving target InSAR imaging and location based on compressed sensing[J]. Chinese Journal of Radio Science, 2014, 29(1): 19-25.
    黄小红, 邱兆坤, 王伟. 目标高速运动对宽带一维距离像的影响及补偿方法研究[J]. 信号处理, 2002, 18(6): 487-490.
    Huang Xiao-hong, Qiu Zhao-kun, and Wang Wei. Research on effect of wideband range profile imaging and compensating method for target moving with high velocity[J]. Signal Processing, 2002, 18(6): 487-490.
    Xing M D, Wu R B, and Bao Z. High resolution ISAR imaging of high speed moving targets[J]. IEE Proceedings- Radar, Sonar and Navigation, 2005, 152(2): 58-67.
    刘红超, 纠博, 刘宏伟, 等. 一种匀加速空间目标高分辨距离像补偿算法[J]. 西安电子科技大学学报, 2012, 39(4): 81-86.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. High resolution range profile compensation algorithm for the space target with uniform acceleration algorithm[J]. Journal of Xidian University, 2012, 39(4): 81-86.
    唐辉, 胡卫东, 郁文贤. 电离层对L波段空间目标ISAR成像影响的建模与仿真[J]. 电波科学学报, 2007, 22(1): 143-147.
    Tang Hui, Hu Wei-dong, and Yu Wen-xian. Modeling and simulation of ionospheric effects on L-band ISAR imaging of space objects[J]. Chinese Journal of Radio Science, 2007, 22(1): 143-147.
    李亮, 洪峻, 明峰, 等. 电离层时空变化对中高轨SAR成像质量的影响分析[J]. 电子与信息学报, 2014, 36(4): 915-922.
    Li Liang, Hong Jun, Ming Feng, et al.. Study on ionospheric effects induced by spatio-temporal variability on medium- earth-orbit SAR imaging quality[J]. Journal of Electronics Information Technology, 2014, 36(4): 915-922.
    Freeman A and Saatchi S S. On the detection of faraday rotation in linearly polarized L-band SAR backscatter signatures[J]. IEEE Transacions on Geoscience and Remote Sensing, 2004, 42(8): 1607-1616.
    Chen Jie, Li Zhou, Liu Wei, et al.. Image formation algorithm for topside ionosphere sounding with spaceborne HF-SAR system[C]. IEEE IGARSS Conference, Boston, Massachusetts, USA, 2008: II549-552.
    邢孟道, 保铮. 电离层电波传播相位污染校正[J]. 电波科学学报, 2002, 17(2): 129-133.
    Xing Meng-dao and Bao Zheng. Phase perturbation correction in ionospheric electromagnetic wave propagation [J]. Chinese Journal of Radio Science, 2002, 17(2): 129-133.
    Nicoll J B and Meyer F J. Mapping the ionosphere using L-band SAR data[C]. IEEE IGARSS Conference, Boston, Massachusetts, USA, 2008: II537-540.
    赵宁, 周芳, 王振, 等. P 波段雷达成像电离层效应的地面观测与校正[J]. 雷达学报, 2014, 3(1): 45-51.
    Zhao Ning, Zhou Fang, Wang Zhen, et al.. Ground observation and correction of P-band radar imaging ionospheric effects[J]. Journal of Radars, 2014, 3(1): 45-51.
    Peleg S and Friedlander B. Multicomponent signal analysis using the poloynomial-phase transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 378-386.
    Barbarossa S, Scaglione A, and Georgios B G. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[J]. IEEE Transactions on Signal Processing, 1998, 46(3): 691-708.
    Peleg S and Friedlander Benjamin. The discrete polynomial- phase transform[J]. IEEE Transactions on Signal Processing, 1995, 43(8): 1901-1914.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1263) PDF downloads(657) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return