Citation: | WANG Xiaochu, WANG Shitong, BAO Fang, JIANG Yizhang. Intraclass-Distance-Sum-Minimization Based Classification Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(3): 532-540. doi: 10.11999/JEIT150633 |
QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.
|
QUINLAN J R. Improved use of continuous attributes in C4.5[J]. Journal of Artificial Intelligence Research, 1996, 4(1): 77-90.
|
PENG F, SCHUURMANS D, and WANG S. Augmenting naive Bayes classifiers with statistical language models[J]. Information Retrieval, 2004, 7(3/4): 317-345.
|
CHENG J and GREINER R. Comparing Bayesian network classifiers[C]. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, USA, 1999: 101-108.
|
COVER T and HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
|
BIJALWAN V, KUMAR V, KUMARI P, et al. KNN based machine learning approach for text and document mining[J]. International Journal of Database Theory and Application, 2014, 7(1): 61-70.
|
黄剑华, 丁建睿, 刘家锋, 等. 基于局部加权的Citation-kNN算法[J]. 电子与信息学报, 2013, 35(3): 627-632.
|
HUANG Jianhua, DING Jianrui, LIU Jiafeng, et al. Citation- kNN algorithm based on locally-weighting[J]. Journal of Electronics Information Technology, 2013, 35(3): 627-632.
|
WELLING M. Fisher linear discriminant analysis[J]. Department of Computer Science, 2008, 16(94): 237-280.
|
FUIN N, PEDEMONTE S, ARRIDGE S, et al. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix[J]. IEEE Transactions on Medical Imaging, 2014, 33(3): 618-635.
|
DUFRENOIS F. A one-class kernel fisher criterion for outlier detection[J]. IEEE Transactions on Neural Networks Learning Systems, 2014, 26(5): 982-994.
|
VAN Ooyen A and NIENHUIS B. Improving the convergence of the back-propagation algorithm[J]. Neural Networks, 1992, 5(3): 465-471.
|
潘舟浩, 李道京, 刘波, 等. 基于BP算法和时变基线的机载InSAR数据处理方法研究[J]. 电子与信息学报, 2014, 36(7): 1585-1591.
|
PAN Zhouhao, LI Daojing, LIU Bo, et al. Processing of the airborne InSAR data based on the BP algorithm and the time-varying baseline[J] Journal of Electronics Information Technology, 2014, 36(7): 1585-1591.
|
SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
|
胡文军, 王士同, 王娟, 等. 非线性分类的分割超平面快速集成方法[J]. 电子与信息学报, 2012, 34(3): 535-542.
|
HU Wenjun, WANG Shitong, WANG Juan, et al. Fast ensemble of separating hyperplanes for nonlinear classification[J]. Journal of Electronics Information Technology, 2012, 34(3): 535-542.
|
GAO X, LU T, LIU P, et al. A soil moisture classification model based on SVM used in agricultural WSN[C]. 2014 IEEE 7th Joint International, Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, 2014: 432-436.
|
RIES C X, RICHTER F, ROMBERG S, et al. Automatic object annotation from weakly labeled data with latent structured SVM[C]. 2014 12th IEEE International Workshop on Content-based Multimedia Indexing (CBMI), Klagenfurt, Austria, 2014: 1-4.
|
PLATT J. Fast training of support vector machines using sequential minimal optimization[J]. Advances in Kernel Methods: Support Vector Learning, 1999(3): 185-208.
|
JOACHIMS T. Making large scale SVM learning practical[R]. Universit?t Dortmund, 1999.
|
CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems Technology, 2011, 2(3): 389-396.
|
MANGASARIAN O L and MUSICANT D R. Lagrangian support vector machines[J]. The Journal of Machine Learning Research, 2001, 1(3): 161-177.
|
SEOK K. Semi-supervised regression based on support vector machine[J]. Computer Engineering Applications, 2014, 25(2): 447-454.
|
LENG Y, XU X, and QI G. Combining active learning and semi-supervised learning to construct SVM classifier[J]. Knowledge-Based Systems, 2013, 44(1): 121-131.
|
CHEN W J, SHAO Y H, XU D K, et al. Manifold proximal support vector machine for semi-supervised classification[J]. Applied Intelligence, 2014, 40(4): 623-638.
|
李红莲, 王春花, 袁保宗. 一种改进的支持向量机NN- SVM[J]. 计算机学报, 2003, 26(8): 1015-1020.
|
LI Honglian, WANG Chunhua, and YUAN Baozong. An improved SVM: NN-SVM[J]. Chinese Journal of Computers, 2003, 26(8): 1015-1020.
|
陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005: 281-322.
|
CHEN Baolin. Optimization Theory and Algorithm[M]. Beijing, Tsinghua University Press, 2005: 281-322.
|
YOSHIYAMA K and SAKURAI A. Laplacian minimax probability machine[J]. Pattern Recognition Letters, 2014, 37: 192-200.
|
MIGLIORATI G. Adaptive polynomial approximation by means of random discrete least squares[J]. Lecture Notes in Computational Science Engineering, 2013, 103: 547-554.
|
HUANG K, YANG H, KING I, et al. The minimum error minimax probability machine[J]. The Journal of Machine Learning Research, 2004(5): 1253-1286.
|
PLAN Y and VERSHYNIN R. Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach[J]. IEEE Transactions on Information Theory, 2013, 59(1): 482-494.
|
ALIZADEN F. Interior point methods in semidefinite programming with applications to combinatorial optimization[J]. SIAM Journal on Optimization, 1995, 5(1): 13-51.
|
BOYD S and VANDENBERGHE L. Convex Optimi- zation[M]. Cambridge University Press, 2009: 127- 214.
|
边肇祺, 张学工. 模式识别[M]. 北京: 清华大学出版社, 2001: 83-90.
|
BIAN Zhaoqi and ZHANG Xuegong. Pattern Recognition[M]. Beijing, Tsinghua University Press, 2001: 83-90.
|