Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
Lü Jian-yong, Tang Zhen-min. An Improved Graph-based Manifold Ranking for Salient Object Detection[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619
Citation: Lü Jian-yong, Tang Zhen-min. An Improved Graph-based Manifold Ranking for Salient Object Detection[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619

An Improved Graph-based Manifold Ranking for Salient Object Detection

doi: 10.11999/JEIT150619
Funds:

The National Natural Science Foundation of China (61473154)

  • Received Date: 2015-05-25
  • Rev Recd Date: 2015-08-13
  • Publish Date: 2015-11-19
  • To overcome the shortage that the spatial connectivity of every node is modeled only via the k-regular graph and the idealistic prior background assumption is used in existing salient object detection method based on graph-based manifold ranking, an improved method is proposed to increase the precision while preserving the high recall. When constructing the graph model, the affinity propagation clustering is utilized to aggregate the superpixels (nodes) to different color clusters adaptively. Then, based on the traditional k-regular graph, the nodes belonging to the same cluster and located in the same spatial connected region are connected with edges. According to the boundary connectivity, the superpixels along the image boundaries are assigned with different background weights. Then, the real background seeds are selected by graph cuts method. Finally, the classical manifold ranking method is employed to compute saliency. The experimental comparison results of 4 quantitative evaluation indicators between the proposed and 7 state-of-the-art methods on MSRA-1000 and complex SOD datasets demonstrate the effectiveness and superiority of the proposed improved method.
  • loading
  • Li W T, Chang H S, Lien K C, et al.. Exploring visual and motion saliency for automatic video object extraction[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2600-2610.
    Chen D Y and Luo Y S. Preserving motion-tolerant contextual visual saliency for video resizing[J]. IEEE Transactions on Multimedia, 2013, 15(7): 1616-1627.
    姜维, 卢朝阳, 李静, 等. 基于视觉显著性和提升框架的场景文字背景抑制方法[J]. 电子与信息学报, 2014, 36(3): 617-623.
    Jiang Wei, Lu Chao-yang, Li Jing, et al.. Visual saliency and boosting based background suppression for scene text[J]. Journal of Electronics Information Technology, 2014, 36(3): 617-623.
    Borji A and Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.
    Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    钱生, 陈宗海, 林名强, 等. 基于条件随机场和图像分割的显著性检测[J]. 自动化学报, 2015, 41(4): 711-724.
    Qian Sheng, Chen Zong-hai, Lin Ming-qiang, et al.. Saliency detection based on conditional random field and image segmentation[J]. Acta Automatica Sinica, 2015, 41(4): 711-724.
    Borji A, Sihite D N, and Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study[J]. IEEE Transactions on Image Processing, 2013, 22(1): 55-69.
    Borji A, Sihite D N, and Itti L. Salient object detection: a benchmark[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 414-429.
    Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the International Conference on Computer Vision Systems, Heraklion, 2008: 66-75.
    Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1597-1604.
    Cheng M M, Zhang G X, Mitra N J, et al.. Global contrast based salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011: 409-416.
    Goferman S, Zelnik-Manor L, and Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.
    Jiang H, Wang J, Yuan Z, et al.. Automatic salient object segmentation based on context and shape prior[C]. Proceedings of the British Machine Vision Conference, Dundee, 2011: 110.1-110.12.
    Cheng M M, Jonathan W, Lin W Y, et al.. Efficient salient region detection with soft image abstraction[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 1529-1536.
    Xie Y L, Lu H C, and Yang M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1689-1698.
    Wei Y C, Wen F, Zhu W J, et al.. Geodesic saliency using background priors[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 29-42.
    Zhu W J, Liang S, Wei Y C, et al.. Saliency optimization from robust background detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
    蒋寓文, 谭乐怡, 王守觉. 选择性背景优先的显著性检测模型[J]. 电子与信息学报, 2015, 37(1): 130-136.
    Jiang Yu-wen, Tan Le-yi, and Wang Shou-jue. Saliency detected model based on selective edges prior[J]. Journal of Electronics Information Technology, 2015, 37(1): 130-136.
    徐威, 唐振民. 利用层次先验估计的显著性目标检测[J]. 自动化学报, 2015, 41(4): 799-812.
    Xu Wei and Tang Zhen-min. Exploiting hierarchical prior estimation for salient object detection[J]. Acta Automatica Sinica, 2015, 41(4): 799-812.
    Jiang B W, Zhang L H, Lu H C, et al.. Saliency detection via absorbing markov chain[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 1665-1672.
    Yang C, Zhang L H, Lu H C, et al.. Saliency detection via graph-based manifold ranking[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013: 3166-3173.
    Cheng X, Du P, Guo J, et al.. Ranking on data manifold with sink points[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(1): 177-191.
    Achanta R, Shaji A, Smith K, et al.. SLIC superpixles compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    Frey B J and Dueck D. Clustering by passing message between data points[J]. Science, 2007, 315(5814): 972-976.
    Boykov Y and Jolly M P. Interactive graph cuts for optimal boundary region segmentation of objects in N-D images[C]. Proceedings of the IEEE International Conference on Computer Vision, Vancouver, 2001: 105-112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1700) PDF downloads(1268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return