Advanced Search
Volume 38 Issue 2
Feb.  2016
Turn off MathJax
Article Contents
FAN Yifei, LUO Feng, LI Ming, HU Chong, CHEN Shuailin. The Multifractal Properties of AR Spectrum and Weak Target Detection in Sea Clutter Background[J]. Journal of Electronics & Information Technology, 2016, 38(2): 455-463. doi: 10.11999/JEIT150581
Citation: FAN Yifei, LUO Feng, LI Ming, HU Chong, CHEN Shuailin. The Multifractal Properties of AR Spectrum and Weak Target Detection in Sea Clutter Background[J]. Journal of Electronics & Information Technology, 2016, 38(2): 455-463. doi: 10.11999/JEIT150581

The Multifractal Properties of AR Spectrum and Weak Target Detection in Sea Clutter Background

doi: 10.11999/JEIT150581
Funds:

The National Ministries Fund (4010101030101)

  • Received Date: 2015-05-15
  • Rev Recd Date: 2015-10-13
  • Publish Date: 2016-02-19
  • This paper focuses on the multifractal properties of sea clutter in power spectrum domain. To overcome the deficiencies of Fourier transform analysis, the power spectrum of the sea clutter is obtained by AutoRegressive (AR) spectrum estimation. The AR model is a linear predictive model, which estimates the power spectrum of sea clutter from its autocorrelation matrix and has a higher frequency resolution than Fourier analysis. This paper concentrates on analyzing the multifractal property of the power spectrum based on AR spectral estimation and its application to weak target detection. Firstly, Fractional Brownian Motion (FBM) is taken as an example to prove the multifractal property of the power spectrum. Then, real measured X-band data is used to verify the multifractal property of the AR spectrum of sea clutter by MultiFractal Detrended Fluctuation Analysis (MF-DFA) method. Finally, the generalized Hurst exponent of AR spectrum and its influence factors are analyzed, and a novel detection method based on local AR generalized Hurst exponent is proposed. The results show that the proposed method is effective for weak target detection in sea clutter background. Compared to the existing fractal method and the traditional CFAR method, the proposed method has a better detection performance in low SCR condition.
  • loading
  • MANDELBROT B. The Fractal Geometry of Nature [M]. New York: WH Freeman, 1982: 1-63.
    LO T, LEUNG H, HAYKIN S, et al. Fractal characterisation of sea scattered signals and detection of sea-surface targets[J]. IEE Proceedings F, Radar and Signal Processing, 1993, 140(4): 243-250.
    孙康, 金钢, 朱晓华. 基于波动分析的海上小目标检测[J]. 电子与信息学报, 2013, 35(4): 882-887. doi: 10.3724/SP.J.1146. 2012.00927.
    SUN Kang, JIN Gang, and ZHU Xiaohua. Small target detection within sea clutter based on the fluctuation analysis[J]. Journal of Electronics Information Technology, 2013, 35(4): 882-887. doi: 10.3724/SP.J.1146.2012.00927.
    DU Gan and ZHANG Shouhong. Detection of sea-surface radar targets based on multifractal analysis[J]. Electronics Letters, 2000, 36(13): 1144-1145.
    石志广, 周剑雄, 付强. 基于多重分形模型的海杂波特性分析与仿真[J]. 系统仿真学报, 2006, 18(8): 2289-2292.
    SHI Zhiguang, ZHOU Jianxiong, and FU Qiang. Sea clutter characteristic analysis and simulation based on multi-fractal model[J]. Journal of System Simulation, 2006, 18(8): 2289-2292.
    关键, 刘宁波, 张建, 等. 海杂波的多重分形关联特性与微弱目标检测[J]. 电子与信息学报, 2010, 32(1): 54-61. doi: 10.3724/SP.J.1146.2008.00980.
    GUAN Jian, LIU Ningbo, ZHANG Jian, et al. Multifractal correlation characteristic of real sea clutter and low- observable targets detection[J]. Journal of Electronics Information Technology, 2010, 32(1): 54-61. doi: 10.3724/ SP.J.1146.2008.00980.
    孙康, 金刚, 朱晓华, 等. 基于Q-MMSPF的海杂波多重分形互相关分析及目标检测[J]. 国防科技大学学报, 2013, 35(3): 170-175.
    SUN Kang, JIN Gang, ZHU Xiaohua, et al. Multifractal cross-correlation analysis of sea clutter and target detection based on Q-MMSPF[J]. Journal of National University of Defense Technology, 2013, 35(3): 170-175.
    HU J, TUNG, W W, and GAO J B. Detection of low observable targetswithin sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas Propagation, 2006, 54(1): 135-143.
    LUO F, ZHANG D T, and ZHANG B. The fractal properties of sea clutter and their applications in maritime target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1295-1299.
    王福友, 罗钉, 季亚新, 等. 海杂波多分形特性分析及小目标检测技术研究[J]. 信号处理, 2013, 29(2): 239-248.
    WANG Fuyou, LUO Ding, JI Yaxin, et al. Multifractal analysis of sea clutter and small target detection[J]. Journal of Signal Processing, 2013, 29(2): 239-248.
    刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34(4): 929-935. doi: 10.3724/SP.J. 1146.2011.00856.
    LIU Ningbo, HUANG Yong, GUAN Jian, et al. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics Information Technology, 2012, 34(4): 929-935. doi: 10.3724/SP.J.1146.2011.00856.
    刘宁波, 关键, 宋杰, 等. 海杂波频谱多重分形特性分析[J]. 中国科学: 信息科学, 2013, 43(6): 768-783.
    LIU Ningbo, GUAN Jian, SONG Jie, et al. Multifractal property of sea clutter frequency spectrum[J]. Science China: Information Sciences, 2013, 43(6): 768-783.
    陈小龙, 刘宁波, 宋杰, 等. 海杂波FRFT域分形特征判别及动目标检测方法[J]. 电子与信息学报, 2011, 33(4): 823-830. doi: 10.3724/SP.J.1146.2010.00486.
    CHEN Xiaolong, LIU Ningbo, SONG Jie, et al. Fractal feature discriminant of swa clutter in FRFT domain and moving target detection algorithm[J]. Journal of Electronics Information Technology, 2011, 33(4): 823-830. doi: 10.3724/SP.J.1146.2010.00486.
    刘宁波, 关键, 王国庆, 等. 基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(9): 1847-1853.
    LIU Ningbo, GUAN Jian, WANG Guoqing, et al. Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain[J]. Acta Electronica Sinica, 2013, 41(9): 1847-1853.
    宋杰, 刘宁波, 王国庆, 等. 海杂波FRFT谱的近似分形特性与目标检测[J]. 宇航学报, 2013, 34(10): 1394-1402.
    SONG Jie, LIU Ningbo, WANG Guoqing, et al. Approximate fractality of sea clutter FRFT spectrum and target detection[J]. Journal of Astronautics, 2013, 34(10): 1394-1402.
    刘宁波, 王国庆, 包中华, 等. 海杂波FRFT谱的多重分形特性与目标检测[J]. 信号处理, 2013, 29(1): 1-8.
    LIU Ningbo, WANG Guoqing, BAO Zhonghua, et al. Multifractal properties of sea clutter FRFT spectrum for target detection[J]. Journal of Signal Processing, 2013, 29(1): 1-8.
    GAO J B, CAO Y, and LEE J M. Principal component analysis of noise [J]. Physics Letters A, 2003, 314(5/6): 392-400.
    CHANG Y C and CHANG S. A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion[J]. IEEE Transactions on Signal Processing, 2002, 50(3): 554-559.
    KIM T S and KIM S. Singularity spectra of fractional Brownian motions as a multi-fractal[J]. Chaos Solitons Fractals, 2004, 19(3): 613-619.
    NOHAJA T J and HAYKIN S. AR-based growler detection in sea clutter[J]. IEEE Transactions on Signal Processing, 1993, 41(3): 1259-1270.
    MANDELBROT B and VAN NESS J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4): 422-437.
    KANTELHARDT J W, ZSCHIEGNER S A, KOSCIELNY- BUNDE E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114.
    DROSOPOULOS A. Description of the OHGR database[R]. Technical Note. 94-14, Defence Research Establishment, Ottawa, 1994: 1-30.
    何友, 关键, 彭应宁. 雷达自动检测与恒虚警处理[M]. 北京: 清华大学出版社, 1999: 230-268.
    HE You, GUAN Jian, and PENG Yingning. Automatic Radar Detection and CFAR Techniques[M]. Beijing: Tsinghua University Press, 1999: 230-268.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1452) PDF downloads(513) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return