Advanced Search
Volume 38 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
CHEN Derong, WANG Wenbin, LIU Bingtai, JIANG Wei, YU Da, GONG Jiulu. Rotation-invariant Histogram of Oriented Gradients for Target Description[J]. Journal of Electronics & Information Technology, 2016, 38(1): 23-28. doi: 10.11999/JEIT150546
Citation: CHEN Derong, WANG Wenbin, LIU Bingtai, JIANG Wei, YU Da, GONG Jiulu. Rotation-invariant Histogram of Oriented Gradients for Target Description[J]. Journal of Electronics & Information Technology, 2016, 38(1): 23-28. doi: 10.11999/JEIT150546

Rotation-invariant Histogram of Oriented Gradients for Target Description

doi: 10.11999/JEIT150546
Funds:

The Foundations of General Armament Department, Funds of Beijing Institute of Technology

  • Received Date: 2015-05-11
  • Rev Recd Date: 2015-09-16
  • Publish Date: 2016-01-19
  • A rotation-invariant feature descripts method called Rotation Invariant Histogram of Oriented Gradients (RI-HOG) is proposed for automatic target recognition. RI-HOG calculates gradient of image first, then the image window is divided into a set of un-overlapped annular regions, called sells, and the Histogram of Gradient (HoG) is used to calculate a feature vector for each cells. After that the HoG of each circle is accumulated to get the main angle of the target area, and then it is rotated due to the main angle to make a normalization of the main angle. At last, the HoG of each circle after rotating is linked to generate the rotation-invariant target feature vector. Experiment results show that target detection method using RI-HOG can find the target under arbitrary rotations. RI-HOG is a rotation-invariant target feature descriptor.
  • loading
  • 颜雪军, 赵春霞, 袁夏. 一种鲁棒的基于图像对比度的局部特征描述方法[J]. 电子与信息学报, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.
    YAN Xuejun, ZHAO Chunxia, and YUAN Xia. A robust local feature descriptor based on image contrast[J]. Journal of Electronics Information Technology, 2014, 36(4): 882-887. doi: 10.3724/SP.J.1146.2013.00846.
    TUYTELAARS T and MIKOLAJCZYK K. Local invariant feature detectors: a survey[J]. Foundations and Trends? in Computer Graphics and Vision, 2008, 3(3): 177-280. 
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    BAYA H, ESSA A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 886-893.
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
    SADEGHI M A and FORSYTH D. 30 Hz object detection with DPM V5[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 65-79.
    HARIHARAN B, ZITNICK C L, and DOLL?AR P. Detecting objects using deformation dictionaries[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014: 1995-2002.
    AHMED E, SHAKHNAROVICH G, and MAJI S. Knowing a good HOG filter when you see it: efficient selection of filters for detection[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 80-94.
    PONCE C and SINGER A. Computing steerable principal components of a large set of images and their rotations[J]. IEEE Transactions on Image Processing, 2011, 20(11): 3051-3062.
    SCHMIDT U and ROTH S. Learning rotation-aware features: from invariant priors to equivariant descriptors[C]. IEEE Conference on Computer Vision and, Pattern Recognition, Providence, RJ, USA, 2012: 2050-2057.
    TAKACS G, CHANDRASEKHAR V, TSAI S, et al. Unified real-time tracking and recognition with rotation-invariant fast features [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, 2010: 934-941.
    TAKACS G, CHANDRASEKHAR V, TSAI S S, et al. Fast computation of rotation-invariant image features by an approximate radial gradient transform[J]. IEEE Transactions on Image Processing, 2013, 22(8): 2970-2982.
    谢志江, 吕波, 刘琴, 等. 旋转不变性图像模板匹配快速算法[J]. 吉林大学学报(工学版), 2013, 43(3): 711-717.
    XIE Zhijiang, LU Bo, LIU Qin, et al. Rotation-invariant and fast image template matching algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(3): 711-717.
    GAUGLITZ S, TURK M, and HLLERER T. Improving keypoint orientation assignment[C]. British Machine Vision Conference, Dundee, Scotland, 2011: 93.1-93.11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1681) PDF downloads(1078) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return