Advanced Search
Volume 38 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
YAN Fenggang, QI Xiaohui, LIU Shuai, SHEN Yi, JIN Ming. Low-complexity DOA Estimation via Subspace Rotation Technique[J]. Journal of Electronics & Information Technology, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539
Citation: YAN Fenggang, QI Xiaohui, LIU Shuai, SHEN Yi, JIN Ming. Low-complexity DOA Estimation via Subspace Rotation Technique[J]. Journal of Electronics & Information Technology, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539

Low-complexity DOA Estimation via Subspace Rotation Technique

doi: 10.11999/JEIT150539
Funds:

The National Natural Science Foundation of China (61501142), Shandong Provincial Natural Science Foundation (ZR2014FQ003), China Postdoctoral Science Foundation (2015M571414), The Fundamental Research Funds for the Central Universities (HIT.NSRIF.2016102)

  • Received Date: 2015-05-07
  • Rev Recd Date: 2015-12-18
  • Publish Date: 2016-03-19
  • The MUltiple SIgnal Classification (MUSIC) algorithm is one of the most important techniques for Direction-Of-Arrival (DOA) estimate. However, this method is found expensive in practical applications, due to the heavy computational cost involved. To reduce the complexity, a novel efficient estimator based on Subspace Rotation Technique (STR) is proposed. The key idea is to divide the noise subspace matrix along its row direction into two sub-matrices, and perform STR to get a new rotated sub-noise subspace with reduced dimensions. As this rotated sub-noise subspace is also orthogonal to the signal subspace, a new cost function is finally derived to estimate DOAs. Theoretical analysis indicates that redundancy computations in spectral search are efficiently avoided by the proposed method as compared to MUSIC, especially in scenarios where large numbers of sensors are applied to locate small numbers of signals. Simulation results verify the effectiveness and efficiency of the new technique.
  • loading
  • SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, 34(3): 276-280.
    GU J F, ZHU W P, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182.
    毛琳琳, 张群飞, 黄建国, 等. 基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法[J]. 电子与信息学报, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208.
    MAO L L, ZHANG Q F, HUANG J G, et al. Improved multiple signal classification algorithm for direction of arrival estimation based on covariance matrix of cross-correlation[J]. Journal of Electronics Information Technology, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208.
    LIU Z M and GUO F C. Azimuth and elevation estimation with rotating long-baseline interferometers[J]. IEEE Transactions on Signal Processing, 2015, 63(9): 2405-2419.
    REDDY W, MUBEEN M and NG B P. Reduced- complexity super-resolution DOA estimation with unknown number of sources[J]. IEEE Signal Processing Letters, 2015, 22(6): 772-776.
    ROEMER F, et al. Analytical performance assessment of multidimensional matrix- and tensor-based ESPRIT-type algorithms[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2611-2625.
    YAN F G, SHEN Y, and JIN M. Fast DOA estimation based on a split subspace decomposition on the array covariance matrix[J]. Signal Processing, 2015, 115(10): 1-8.
    闫锋刚, 王军, 沈毅, 等. 基于半实值Capon的高效波达方向估计算法[J]. 电子与信息学报, 2015, 37(4): 811-816. doi: 10.11999/JEIT141034.
    YAN F G, WANG J, SHEN Y, et al. Efficient direction- of-arrival estimation based on semi-real-valued capon[J]. Journal of Electronics Information Technology, 2015, 37(4): 811-816. doi: 10.11999/JEIT141034.
    CHENG Q, HUANG L, and SO H C. Improved unitary root- MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144.
    蔡晶晶, 等. 强约束优化降维MUSIC二维DOA估计[J]. 电子与信息学报, 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127.
    CAI J J, et al. Two-dimensional DOA estimation using reduced-dimensional MUSIC algorithm with strong- constraint optimization[J]. Journal of Electronics Information Technology, 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127.
    HUA G, et al. Efficient two dimensional direction finding via auxiliary-variable manifold separation technique for arbitrary array structure[C]. IEEE International Conference on Communication Problem-solving (ICCP), Beijing, 2014, 532-537.
    RUBSAMEN M and GERSHMAN A B. Direction- of-arrival estimation for nonuniform sensor arrays: from manifold separation to Fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 588-599.
    YAN F G, JIN M, LIU S, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries [J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548-1560.
    GOLUB G H and ChARES VAN LOAN H. Matrix Computations[M]. Baltimore, MD: The Johns Hopkins University Press, 1996: 238-246.
    XU G and KAILATH T. Fast subspace decomposition[J]. IEEE Transactions on Signal Processing, 199, 42(3): 539-551.
    REN Q S and WILLIS A J. Fast root MUSIC algorithm[J]. Electronics Letters, 1997, 33(6): 450-451.
    ZHANH Q T. Probability of resolution of the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1994, 43(4): 978-987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1635) PDF downloads(567) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return