Citation: | SUN Wenjun, RUI Guosheng, ZHANG Yang, CHEN Qiang. Weak Signal Detection Method Based on Dominative Frequency PowerRatio Derived from Systems First-order Perturbation Solution[J]. Journal of Electronics & Information Technology, 2016, 38(1): 160-167. doi: 10.11999/JEIT150510 |
邓冬虎, 张群, 罗迎, 等. Duffing 振子在低信噪比雷达目标微动特征提取中的应用[J]. 电子与信息学报, 2014, 36(2): 453-458. doi: 10.3724/SP.J.1146.2013.00624.
|
DENG Donghu, ZHANG Qun, LUO Yin, et al.. The application of Duffing oscillators to micro-motion feature extraction of radar target under low SNR[J]. Journal of Electronics Information Technology, 2014, 36(2): 453-458. doi: 10.3724/SP.J.1146.2013.00624.
|
JAISER A R, STEN K, and KYSLE P. A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions[J]. Computers and Mathematics with Applications, 2012(64): 2049-2065.
|
靳晓艳, 周希元. 一种基于特定Duffing振子的MPSK信号调制识别算法[J]. 电子与信息学报, 2013, 35(8): 1882-1887. doi: 10.3724/SP.J.1146.2012.01728.
|
JIN Xiaoyan and ZHOU Xiyuan. A modulation classification algorithm for MPSK signals based on special Duffing oscillator[J]. Journal of Electronics Information Technology, 2013, 35(8): 1882-1887. doi: 10.3724/SP.J.1146. 2012.01728.
|
MLOON F, TAYLE G, DILER B, et al. Pseudorandom number generator based on mixing of three chaotic maps[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 1-8.
|
韩建群. 一种减小Duffing系统可检测断续正弦信号频率范围的方法[J]. 电子学报, 2013, 41(4): 733-738.
|
HAN Jianqun. A method of narrowing frequency range of intermittent sine signal detected by Duffing system[J]. Acta Electronica Sinica, 2013, 41(4): 733-738.
|
张淑清, 翟欣沛, 董璇, 等. EMD及Duffing振子在小电流系统故障选线方法中的应用[J]. 中国电机工程学报, 2013, 33(10): 161-167.
|
ZHANG Shuqing, ZHAI Xinpei, DONG Xuan, et al. Application of EMD and Duffing oscillator to fault line detection in un-effectively grounded system[J]. Proceedings of the CSEE, 2013, 33(10): 161-167.
|
MENG K L and STEVE S. Temporal and spectral responses of a softening Duffing oscillator undergoing route-to-chaos[J]. Communication Nonlinear Science Numerical Simulation, 2012(17): 5217-5228.
|
冯俊, 徐伟, 顾仁财, 等. 有界噪声与谐和激励联合作用下Duffing-Rayleigh振子的Melnikov混沌[J]. 物理学报, 2011, 34(9): 170-177.
|
FENG Jun, XU Wei, GU Rencai, et al. Melnikov chaos in Dufing-Rayleigh oscillator subjected to combined bounded noise and harmonic excitations[J]. Acta Physica Sinica, 2011, 34(9): 170-177.
|
唐元璋, 楼京俊, 翁雪涛, 等. Duffing 振子倍周期分岔谱特性[J]. 振动与冲击, 2014(2): 60-63.
|
TANG Yuanzhang, LOU Jingjun, WENG Xuetao, et al. Spectrum property of period-doubling bifurcations of Duffing oscillator[J]. Journal of Vibration and Shock, 2014(2): 60-63.
|
JIMENEZ-TRIANA A, WALLACE K T, GUANRONG C, et al. Chaos control in Duffing system using impulsive parametric perturbations[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(4): 305-309.
|
刘延彬, 陈予恕. 余维4的Duffing-Van der Pol方程全局分岔分析[J]. 振动与冲击, 2011(1): 69-72.
|
LIU Yanbin and CHEN Yunu. The global analyses on Duffing-Van der Pol equation of redundant dimension 4[J]. Journal of Vibration and Shock, 2011(1): 69-72.
|
姚天亮, 刘海峰, 许建良, 等. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计[J]. 物理学报, 2012, 61(6): 53-57.
|
YAO Tianliang, LIU Haifeng, XU Jianliang, et al. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent[J]. Acta Physica Sinica, 2012, 61(6): 53-57.
|
芮国胜, 张洋, 苗俊, 等. 联合增益递推的Duffing系统弱信号检测算法[J]. 电子学报, 2012, 40(6): 1269-1273.
|
RUI Guosheng, ZHANG Yang, MIAO Jun, et al. A weak signal detection method by Duffing System with the gain[J]. Acta Electronica Sinica, 2012, 40(6): 1269-1273.
|
杨红英, 叶昊, 王桂增, 等. Duffing 振子的 Lyapunov 指数与 Floquet 指数研究[J]. 仪器仪表学报, 2008, 29(5): 927-932.
|
YANG Hongying, YE Hao, WANG Guizeng, et al. Study on Lyapunov exponent and Floquet exponent of Duffing oscillator[J]. Chinese Journal of Scientific Instrument, 2008, 29(5): 927-932.
|
魏恒东, 甘露, 李立萍. 基于哈密顿量的Duffing振子微弱信号检测[J]. 电子科技大学学报, 2012, 41(2): 203-207.
|
WEI Hengdong GAN Lu, and LI Liping. Weak signal detection by duffing oscillator based on hamiltonian[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 203-207.
|
DIMITRIOS E P, EFSTATHIOS E T, and MICHALIS P M. Exact analytic solutions for the damped Duffing nonlinear oscillator[J]. Chaos, Solitons and Fractals, 2006(334): 311-316.
|
IBRAHIM A M A and CHOUDHURY P K. On the Maxwell- Duffing approach to model photonic deflection sensor[J]. IEEE Photonics Journal, 2013, 5(4): 6800812.
|
李月, 徐凯, 杨宝俊, 等. 混沌振子系统周期解几何特征量分析与微弱周期信号的定量检测[J]. 物理学报, 2008, 57(6): 3353-3358.
|
LI Yue, XU Kai, YANG Baojun, et al. Analysis of the geometric characteristic quantity of the periodic solutions of the chaotic oscillator system and the quantitative detection of weak periodic signal[J]. Acta Physica Sinica, 2008, 57(6): 3353-3358.
|
何斌, 杨灿军, 陈鹰. 混沌周期解提高测量灵敏度算法及抗干扰分析[J]. 电子学报, 2003, 31(1): 68-70.
|
HE Bin, YANG Canjun, and CHEN Ying. Study on enhancing delicacy Sensors using chaotic system[J]. Acta Electronica Sinica, 2003, 31(1): 68-70.
|
LI Keqiang, WANG Shangjiu, and ZHAO Yonggang. Multiple periodic solutions for asymptotically linear Duffing equations with resonance[J]. Journal of Mathematical Analysis and Applications, 2013, 397: 156-160.
|
王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪[J]. 物理学报, 2013, 13(7): 1-12.
|
WANG Wenbo and WANG Xiangli. Empirical mode decomposition pulsar signal denoising method based on predicting of noise mode cell[J]. Acta Physica Sinica, 2013, 13(7): 1-12.
|
ALEX E. Analytical solution of the damped Helmholtz Duffing equation[J]. Applied Mathematics Letters, 2012(25): 2349-2353.
|
YANHUA H, XIANFENG C, SPENCER P S, et al. Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator[J]. IEEE Journal of Quantum Electronics, 2015, 51(3): 1-6.
|
YAZDI M K, AHMADIAN H, MIRZABEIGY A, et al. Dynamic analysis of vibrating systems with nonlinearities[J]. Communications in Theoretical Physics, 2012(2): 183-187.
|