Advanced Search
Volume 38 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
SUN Wenjun, RUI Guosheng, ZHANG Yang, CHEN Qiang. Weak Signal Detection Method Based on Dominative Frequency PowerRatio Derived from Systems First-order Perturbation Solution[J]. Journal of Electronics & Information Technology, 2016, 38(1): 160-167. doi: 10.11999/JEIT150510
Citation: SUN Wenjun, RUI Guosheng, ZHANG Yang, CHEN Qiang. Weak Signal Detection Method Based on Dominative Frequency PowerRatio Derived from Systems First-order Perturbation Solution[J]. Journal of Electronics & Information Technology, 2016, 38(1): 160-167. doi: 10.11999/JEIT150510

Weak Signal Detection Method Based on Dominative Frequency PowerRatio Derived from Systems First-order Perturbation Solution

doi: 10.11999/JEIT150510
Funds:

The National Natural Science Foundation of China (41476089)

  • Received Date: 2015-05-04
  • Rev Recd Date: 2015-08-28
  • Publish Date: 2016-01-19
  • Traditional chaotic detection methods have many problems, such as low criterion accuracy and delay state response. To cope with these problems, a weak signal detection method based on dominative frequency power ratio derived from systems first-order perturbation solution is proposed in this paper. This algorithm is ascribable to the all-around analyses of chaotic states global property and system solutions frequency-domain characteristics. It not only gives an effective and accurate critical threshold which could offer more reliable guarantee for signal detection, but also disclosures the differences between system states and the coherent physical meanings. The first-order perturbation equilibrium solution of Duffing-Van der pol oscillator is derived with parameter perturbation method, and it is proved that this solutionis is most significant to the dominative frequency. And then, the effective signal is selectively reconstructed through empirical mode decomposition, and system state is redefined with this ratio restrained under MMSE criterion. Finally the mapping relationship between power ratio of dominative frequencies and driving motivation amplitude is obtained and it is considered as determination criterion of critical threshold. Experimental results show that this algorithm could bring an promotion about one order of magnitude in system reliability, and the response speed is at least doubled compared with traditional methods.
  • loading
  • 邓冬虎, 张群, 罗迎, 等. Duffing 振子在低信噪比雷达目标微动特征提取中的应用[J]. 电子与信息学报, 2014, 36(2): 453-458. doi: 10.3724/SP.J.1146.2013.00624.
    DENG Donghu, ZHANG Qun, LUO Yin, et al.. The application of Duffing oscillators to micro-motion feature extraction of radar target under low SNR[J]. Journal of Electronics Information Technology, 2014, 36(2): 453-458. doi: 10.3724/SP.J.1146.2013.00624.
    JAISER A R, STEN K, and KYSLE P. A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions[J]. Computers and Mathematics with Applications, 2012(64): 2049-2065.
    靳晓艳, 周希元. 一种基于特定Duffing振子的MPSK信号调制识别算法[J]. 电子与信息学报, 2013, 35(8): 1882-1887. doi: 10.3724/SP.J.1146.2012.01728.
    JIN Xiaoyan and ZHOU Xiyuan. A modulation classification algorithm for MPSK signals based on special Duffing oscillator[J]. Journal of Electronics Information Technology, 2013, 35(8): 1882-1887. doi: 10.3724/SP.J.1146. 2012.01728.
    MLOON F, TAYLE G, DILER B, et al. Pseudorandom number generator based on mixing of three chaotic maps[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 1-8.
    韩建群. 一种减小Duffing系统可检测断续正弦信号频率范围的方法[J]. 电子学报, 2013, 41(4): 733-738.
    HAN Jianqun. A method of narrowing frequency range of intermittent sine signal detected by Duffing system[J]. Acta Electronica Sinica, 2013, 41(4): 733-738.
    张淑清, 翟欣沛, 董璇, 等. EMD及Duffing振子在小电流系统故障选线方法中的应用[J]. 中国电机工程学报, 2013, 33(10): 161-167.
    ZHANG Shuqing, ZHAI Xinpei, DONG Xuan, et al. Application of EMD and Duffing oscillator to fault line detection in un-effectively grounded system[J]. Proceedings of the CSEE, 2013, 33(10): 161-167.
    MENG K L and STEVE S. Temporal and spectral responses of a softening Duffing oscillator undergoing route-to-chaos[J]. Communication Nonlinear Science Numerical Simulation, 2012(17): 5217-5228.
    冯俊, 徐伟, 顾仁财, 等. 有界噪声与谐和激励联合作用下Duffing-Rayleigh振子的Melnikov混沌[J]. 物理学报, 2011, 34(9): 170-177.
    FENG Jun, XU Wei, GU Rencai, et al. Melnikov chaos in Dufing-Rayleigh oscillator subjected to combined bounded noise and harmonic excitations[J]. Acta Physica Sinica, 2011, 34(9): 170-177.
    唐元璋, 楼京俊, 翁雪涛, 等. Duffing 振子倍周期分岔谱特性[J]. 振动与冲击, 2014(2): 60-63.
    TANG Yuanzhang, LOU Jingjun, WENG Xuetao, et al. Spectrum property of period-doubling bifurcations of Duffing oscillator[J]. Journal of Vibration and Shock, 2014(2): 60-63.
    JIMENEZ-TRIANA A, WALLACE K T, GUANRONG C, et al. Chaos control in Duffing system using impulsive parametric perturbations[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(4): 305-309.
    刘延彬, 陈予恕. 余维4的Duffing-Van der Pol方程全局分岔分析[J]. 振动与冲击, 2011(1): 69-72.
    LIU Yanbin and CHEN Yunu. The global analyses on Duffing-Van der Pol equation of redundant dimension 4[J]. Journal of Vibration and Shock, 2011(1): 69-72.
    姚天亮, 刘海峰, 许建良, 等. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计[J]. 物理学报, 2012, 61(6): 53-57.
    YAO Tianliang, LIU Haifeng, XU Jianliang, et al. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent[J]. Acta Physica Sinica, 2012, 61(6): 53-57.
    芮国胜, 张洋, 苗俊, 等. 联合增益递推的Duffing系统弱信号检测算法[J]. 电子学报, 2012, 40(6): 1269-1273.
    RUI Guosheng, ZHANG Yang, MIAO Jun, et al. A weak signal detection method by Duffing System with the gain[J]. Acta Electronica Sinica, 2012, 40(6): 1269-1273.
    杨红英, 叶昊, 王桂增, 等. Duffing 振子的 Lyapunov 指数与 Floquet 指数研究[J]. 仪器仪表学报, 2008, 29(5): 927-932.
    YANG Hongying, YE Hao, WANG Guizeng, et al. Study on Lyapunov exponent and Floquet exponent of Duffing oscillator[J]. Chinese Journal of Scientific Instrument, 2008, 29(5): 927-932.
    魏恒东, 甘露, 李立萍. 基于哈密顿量的Duffing振子微弱信号检测[J]. 电子科技大学学报, 2012, 41(2): 203-207.
    WEI Hengdong GAN Lu, and LI Liping. Weak signal detection by duffing oscillator based on hamiltonian[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 203-207.
    DIMITRIOS E P, EFSTATHIOS E T, and MICHALIS P M. Exact analytic solutions for the damped Duffing nonlinear oscillator[J]. Chaos, Solitons and Fractals, 2006(334): 311-316.
    IBRAHIM A M A and CHOUDHURY P K. On the Maxwell- Duffing approach to model photonic deflection sensor[J]. IEEE Photonics Journal, 2013, 5(4): 6800812.
    李月, 徐凯, 杨宝俊, 等. 混沌振子系统周期解几何特征量分析与微弱周期信号的定量检测[J]. 物理学报, 2008, 57(6): 3353-3358.
    LI Yue, XU Kai, YANG Baojun, et al. Analysis of the geometric characteristic quantity of the periodic solutions of the chaotic oscillator system and the quantitative detection of weak periodic signal[J]. Acta Physica Sinica, 2008, 57(6): 3353-3358.
    何斌, 杨灿军, 陈鹰. 混沌周期解提高测量灵敏度算法及抗干扰分析[J]. 电子学报, 2003, 31(1): 68-70.
    HE Bin, YANG Canjun, and CHEN Ying. Study on enhancing delicacy Sensors using chaotic system[J]. Acta Electronica Sinica, 2003, 31(1): 68-70.
    LI Keqiang, WANG Shangjiu, and ZHAO Yonggang. Multiple periodic solutions for asymptotically linear Duffing equations with resonance[J]. Journal of Mathematical Analysis and Applications, 2013, 397: 156-160.
    王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪[J]. 物理学报, 2013, 13(7): 1-12.
    WANG Wenbo and WANG Xiangli. Empirical mode decomposition pulsar signal denoising method based on predicting of noise mode cell[J]. Acta Physica Sinica, 2013, 13(7): 1-12.
    ALEX E. Analytical solution of the damped Helmholtz Duffing equation[J]. Applied Mathematics Letters, 2012(25): 2349-2353.
    YANHUA H, XIANFENG C, SPENCER P S, et al. Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator[J]. IEEE Journal of Quantum Electronics, 2015, 51(3): 1-6.
    YAZDI M K, AHMADIAN H, MIRZABEIGY A, et al. Dynamic analysis of vibrating systems with nonlinearities[J]. Communications in Theoretical Physics, 2012(2): 183-187.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1188) PDF downloads(412) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return