Advanced Search
Volume 38 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
PENG Lei, LI Guangyao, XIAO Mang, WANG Gang, XIE Li. Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models[J]. Journal of Electronics & Information Technology, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501
Citation: PENG Lei, LI Guangyao, XIAO Mang, WANG Gang, XIE Li. Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models[J]. Journal of Electronics & Information Technology, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501

Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models

doi: 10.11999/JEIT150501
Funds:

Shandong Provincial Natural Science Foundation, China (ZR2015FL005), Taian Science and Technology Development Program, China (2015GX2016)

  • Received Date: 2015-04-30
  • Rev Recd Date: 2015-10-08
  • Publish Date: 2016-01-19
  • In the practical application, non-rigid point set registration should be robust for noise, occlusion or outliers. In this paper, Gaussian Mixture Model (GMM) and neighborhood structure information are used for the non-rigid point set registration. Gaussian Mixture Model is used to represent the model set, and the transformation is built by using Gaussian radial basis function. The proportion of each Gaussian component is decided by the neighborhood structure information of points. In E-step of the EM algorithm the correspondence is solved, and in M-step the outlier ratio and the closed-form solution of the transformation are calculated. Until convergence the optimal solution is obtained. As compared to the state-of-the-art algorithms, the experiments with synthetic data and real data of the retina images show that the proposed method can improve the robustness and the accuracy.
  • loading
  • BESL P J and MCKAY N D. Method for registration of 3-D shapes[C]. Robotics-DL tentative. International Society for Optics and Photonics, Boston, 1992: 586-606.
    CHUI H and RANGARAJAN A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2): 114-141.
    BELONGIE S, MALIK J, and PUZICHA J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
    MA J, ZHAO J, TIAN J, et al. Robust estimation of nonrigid transformation for point set registration[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2147-2154.
    CHEN J, MA J, YANG C, et al. Non-rigid point set registration via coherent spatial mapping[J]. Signal Processing, 2015, 106: 62-72.
    ZHENG Y and DOERMANN D. Robust point matching for nonrigid shapes by preserving local neighborhood structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 643-649.
    GE S, FAN G, and DING M. Non-rigid point set registration with global-local topology preservation[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Columbus, 2014: 245-251.
    TANG J, SHAO L, and ZHEN X. Robust point pattern matching based on spectral context[J]. Pattern Recognition, 2014, 47(3): 1469-1484.
    LEE J H and WON C H. Topology preserving relaxation labeling for nonrigid point matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 427-432.
    YAN X, WANG W, ZHAO J, et al. Relaxation labeling for non-rigid point matching under neighbor preserving[J]. Journal of Central South University, 2013, 20: 3077-3084.
    ZHAO H, JIANG B, TANG J, et al. Image matching using a local distribution based outlier detection technique[J]. Neurocomputing, 2015, 148: 611-618.
    秦红星, 徐雷. 基于信息论的 KL-Reg 点云配准算法[J]. 电子与信息学报, 2015, 37(6): 1520-1524. doi: 10.11999/ JEIT141248.
    QIN Hongxing and XU Lei. Information theory based KL-Reg point cloud registration[J]. Journal of Electronics Information Technology, 2015, 37(6): 1520-1524. doi: 10. 11999/JEIT141248.
    TAO W and SUN K. Asymmetrical gauss mixture models for point sets matching[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014: 1598-1605.
    ZHOU Z, ZHENG J, DAI Y, et al. Robust non-rigid point set registration using studentst mixture model[J]. PlosOne, 2014, 9(3): e91381.
    JIAN B and VEMURI B C. Robust point set registration using gaussian mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.
    MYRONENKO A and SONG X. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.
    ZHAO J, MA J, TIAN J, et al. A robust method for vector field learning with application to mismatch removing[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 2011: 2977-2984.
    赵烨, 蒋建国, 洪日昌. 基于空间约束的快速鲁棒特征匹配优化[J]. 电子与信息学报, 2014, 36(11): 2571-2577. doi: 10.3724/ SP.J.1146.2013.01960.
    ZHAO Ye, JIANG Jianguo, and HONG Richang. A speeded up robust feature matching optimization based on apatial constraint[J]. Journal of Electronics Information Technology, 2014, 36(11): 2571-2577. doi: 10.3724/ SP.J. 1146.2013.01960.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1868) PDF downloads(747) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return