Advanced Search
Volume 37 Issue 12
Jan.  2016
Turn off MathJax
Article Contents
Wang Li, Feng Yan. Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction[J]. Journal of Electronics & Information Technology, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480
Citation: Wang Li, Feng Yan. Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction[J]. Journal of Electronics & Information Technology, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480

Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction

doi: 10.11999/JEIT150480
Funds:

The National Natural Science Foundation of China (61071171)

  • Received Date: 2015-04-28
  • Rev Recd Date: 2015-08-21
  • Publish Date: 2015-12-19
  • Compressed Sensing (CS) reconstruction of hyperspectral images driven by spatial-spectral multihypothesis prediction is proposed in order to take full advantage of spatial and spectral correlation of hyperspectral images. The hyperspectral images are grouped into reference band images and non-reference band images, and the reference band images are reconstructed by Smoothed Projected Landweber (SPL) algorithm. For the non-reference band images, the spatial-spectral multihypothesis prediction model is introduced to improve the reconstruction accuracy. Multihypothesis predictions drawn for an image block of non-reference band image are made not only from spatially surrounding image blocks within an initial non-predicted reconstruction of non-reference band image, but also from the corresponding position and neighboring image blocks within the reconstruction of reference band image. The resulting predictions are used to generate residuals in the projection domain, and the residuals are reconstructed to revise the prediction values. The residuals being typically more compressible than the original images and the iterative execution mode lead to improved reconstruction quality. Tikhonov regularization is utilized to solve the weight coefficients of multihypothesis prediction and structural similarity is used as a criterion to decide whether to change the search window size or not. Cross validation is presented to compute the criterion parameter of iteration termination. Experimental results demonstrate that the proposed algorithm outperforms alternative strategies only using spatial correlation or spectral correlation to predict or not employing prediction and the peak signal-to-noise ratio of its reconstructed images is increased by more than 2 dB.
  • loading
  • Heras D B, Argello F, and Quesada-Barriuso P. Exploring ELM-based spatialspectral classification of hyperspectral images[J]. International Journal of Remote Sensing, 2014, 35(2): 401-423.
    Zhao C, Li X, Ren J, et al.. Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery[J]. International Journal of Remote Sensing, 2013, 34(24): 8669-8684.
    Tan C, Samanta A, Jin X, et al.. Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies[J]. International Journal of Remote Sensing, 2013, 34(24): 8789-8802.
    Xie X, Li Y, Li R, et al.. Hyperspectral characteristics and growth monitoring of rice (Oryza sativa) under asymmetric warming[J]. International Journal of Remote Sensing, 2013, 34(23): 8449-8462.
    Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    Provost J and Lesage F. The application of compressed sensing for photo-acoustic tomography[J]. IEEE Transactions on Medical Imaging, 2009, 28(4): 585-594.
    Riccardo M, Giorao Q, Michele R, et al.. A Bayesian analysis of compressive sensing data recovery in wireless sensor networks[C]. International Conference on Ultra Modern Telecommunications&Workshops, St. Petersburg, 2009: 1-6.
    Shu X and Ahuja N. Imaging via three-dimensional compressive sampling[C]. Paper presented at the International Conference on Computer Vision (ICCV), Barcelona, ES, 2011: 439-446.
    沈志博, 董春曦, 黄龙, 等. 基于压缩感知的宽频段二维DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2935-2941.
    Shen Zhi-bo, Dong Chun-xi, Huang Long, et al.. Broadband 2-D DOA estimation based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(12): 2935-2941.
    王军, 闫锋刚, 马文洁, 等. 基于Laplace先验的Bayes压缩感知波达方向估计[J]. 电子与信息学报, 2015, 37(4): 817-823.
    Wang Jun, Yan Feng-gang, Ma Wen-jie, et al.. Direction-of-arrival estimation using Laplace prior based on bayes compressive sensing[J]. Journal of Electronics Information Technology, 2015, 37(4): 817-823.
    Yin J, Sun J, and Jia X. Sparse analysis based on generalized Gaussian model for spectrum recovery with compressed sensing theory[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2752-2759.
    Cands E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
    Figueiredo M, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598.
    Baron S, Sarvoham R, and Baraniuk R G. Bayesian compressive sensing via belief propagation[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 269?280.
    Mallat S G and Zhang Z. Matching pursuits with time- frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    Fowler J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230-2242.
    Gan L. Block Compressed sensing of natural images[C]. 15th International Conference on Digital Signal Processing, Cardiff, Wales, UK, 2007: 403-406.
    Ji S, Dunson D, and Carin L. Multitask compressive sensing[J]. IEEE Transaction on Signal Processing, 2009, 57(1): 92-106.
    Claudia V C, Henry A, and Gonzalo R A. Fast lapped block reconstructions in compressive spectral imaging[J]. Applied Optics, 2013, 52(10): D32-45.
    Henry A, Hoover R, Wu Y, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12-21.
    刘海英, 吴成柯, 吕沛, 等. 基于谱间预测和联合优化的高光谱压缩感知图像重构[J]. 电子与信息学报, 2011, 33(9): 2248-2252.
    Liu Hai-ying, Wu Cheng-ke, L Pei, et al.. Compressed hyperspectral image sensing reconstruction based on interband prediction and joint optimization[J]. Journal of Electronics Information Technology, 2011, 33(9): 2248-2252.
    刘海英, 李云松, 吴成柯, 等. 一种高重构质量低复杂度的高光谱图像压缩感知[J]. 西安电子科技大学学报(自然科学版), 2011, 38(3): 37-41.
    Liu Hai-ying, Li Yun-song, Wu Cheng-ke, et al.. Compressed hyperspectral image sensing based on interband prediction[J]. Journal of Xidian University (Natural Science), 2011, 38(3): 37-41.
    Mun S and Fowler J E. Residual reconstruction for blocked-based compressed sensing of video[C]. Paper presented at the Data Compression Conference (DCC), Snowbird, UT, 2011: 183-192.
    李然, 干宗良, 崔子冠, 等. 联合时空特征的视频分块压缩感知重构[J]. 电子与信息学报, 2014, 36(2): 285-292.
    Li Ran, Gan Zong-liang, Cui Zi-guan, et al.. Block compressed sensing reconstruction of video combined with temporal-spatial characteristics[J]. Journal of Electronics Information Technology, 2014, 36(2): 285-292.
    贾应彪, 冯燕, 袁晓玲, 等. 高光谱图像分块压缩感知采样及谱间预测重构[J]. 应用科学学报, 2014, 32(3): 281-286.
    Jia Ying-biao, Feng Yan, Yuan Xiao-ling, et al.. Block compressed sensing sampling and reconstruction using spectral prediction for hyperspectral images[J]. Journal of Applied Science, 2014, 32(3): 281-286.
    Chen C, Tramel E W, and Fowler J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]. Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2011: 1193-1198.
    Chen C, Li W, Tramel E W, et al.. Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 365-374.
    Fowler J E, Mun S, and Tramel E W. Block-based compressed sensing of images and video[J]. Foundations and Trends in Signal Processing, 2012, 4(4): 297-416.
    Mun S and Fowler J E. Block compressed sensing of images using directional transforms[C]. Paper presented at the International Conference on Image Processing (ICIP), Cairo, EG, 2009: 3021-3024.
    Johnson W B and Lindenstrauss J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathematics, 1984, 26(1): 189-206.
    Tikhonov A N and Arsenin V Y. Solutions of Ill-posed Problems[M]. Washington, DC, USA: V. H. Winston Sons, 1977: 45-87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1203) PDF downloads(535) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return