Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
Wang Si-qi, Feng Xiang-chu, Zhang Rui, Li Xiao-ping. Low-rank Sparse Decomposition Model Based on Max-norm[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468
Citation: Wang Si-qi, Feng Xiang-chu, Zhang Rui, Li Xiao-ping. Low-rank Sparse Decomposition Model Based on Max-norm[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468

Low-rank Sparse Decomposition Model Based on Max-norm

doi: 10.11999/JEIT150468
Funds:

The National Natural Science Foundation of China (61271294, 61472303)

  • Received Date: 2015-04-22
  • Rev Recd Date: 2015-07-08
  • Publish Date: 2015-11-19
  • In order to better solve the low-rank and sparse decomposition problem for high-dimensional data matrix, this paper puts forward a novel Max minimization model with Max-norm as the convex relaxation of the rank function, and provides the corresponding algorithm. Based on the complexity analysis on the novel model, an improved Max constraint model is further proposed, which not only has good performance in the decomposition problem but also can be solved with a fast projection gradient method. The experimental results show that the proposed two models are effective for low-rank sparse decomposition problem.
  • loading
  • Candes E J, Li Xiao-dong, Ma Yi, et al.. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11.
    Candes E J and Plan Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936.
    Chen Chong-yu, Cai Jian-fei, Lin Wei-si, et al.. Incremental low-rank and sparse decomposition for compressing videos captured by fixed cameras[J]. Journal of Visual Communication and Image Representation, 2015, 26(1): 338-348.
    Sheng Bi-yun, Yang Wan-kou, Zhang Bao-chang, et al.. A non-negative low rank and sparse model for action recognition [C]. Proceedings of the 6th Chinese Conference on Pattern Recognition, Changsha, China, 2014: 266-275.
    Li Sheng, Li Liang-yue, and Fu Yun. Low-Rank and Sparse Dictionary Learning[M]. Switzerland: Springer International Publishing, 2014: 61-85.
    霍雷刚, 冯象初. 基于主成分分析和字典学习的高光谱遥感图像去噪方法[J]. 电子与信息学报, 2014, 36(11): 2723-2729.
    Huo Lei-gang and Feng Xiang-chu. Denoising of hyperspectral remote sensing image based on principal component analysis and dictionary learning[J].? Journal of Electronics Information Technology, 2014, 36(11): 2723-2729.
    张文娟, 冯象初. 非凸低秩稀疏约束的图像超像素分割方法[J]. 西安电子科技大学学报, 2013, 40(5): 86-91.
    Zhang Wen-juan and Feng Xiang-chu. Image super-pixels segmentation method based on the non-convex low-rank and sparse constraints[J]. Journal of Xidian University, 2013, 40(5): 86-91.
    Fazel M. Matrix rank minimization with applications[D]. [Ph.D. dissertation], Stanford University, 2002.
    Srebro N and Shraibman A. Rank, Trace-norm and Max-norm [M]. Heidelberg: Springer Berlin Heidelberg, 2005: 545-560.
    Cai T and Zhou Wen-xin. A max-norm constrained minimization approach to 1-bit matrix completion[J]. The Journal of Machine Learning Research, 2013, 14(1): 3619-3647.
    Neyshabur B, Makarychev Y, and Srebro N. Clustering, hamming embedding, generalized lsh and the max norm [C]. Proceedings of the 25th International Conference on Algorithmic Learning Theory, Bled, 2014: 306-320.
    Forster J, Schmitt N, Simon H U, et al.. Estimating the optimal margins of embeddings in euclidean half spaces[J]. Machine Learning, 2003, 51(3): 263-281.
    庄哲民, 章聪友, 杨金耀, 等. 基于灰度特征和自适应阈值的虚拟背景提取研究[J]. 电子与信息学报, 2015, 37(2): 346-352.
    Zhuang Zhe-min, Zhang Cong-you, Yang Jin-yao, et al.. Investigation on visual background extractor based on gray feature and adaptive threshold[J]. Journal of Electronics Information Technology, 2015, 37(2): 346-352.
    张超, 吴小培, 吕钊. 基于独立分量分析的运动目标检测算法中对通道数选择和观测向量生成方式的实验和分析[J]. 电子与信息学报, 2015, 37(1): 137-142.
    Zhang Chao, Wu Xiao-pei, and L Zhao. Experiments and analysis on observation vector generation and channel number selection in motion detection algorithm based on independent component analysis[J]. Journal of Electronics Information Technology, 2015, 37(1): 137-142.
    Salakhutdinov R and Srebro N. Collaborative filtering in a non-uniform world: learning with the weighted trace norm[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Vancouver, 2010: 2056-2064.
    Lee J, Recht B, Salakhutdinov R, et al.. Practical large-scale optimization for max-norm regularization[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Vancouver, 2010: 1297-1305.
    Shen Jie, Xu Huan, and Li Ping. Online optimization for max-norm regularization[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Montreal, 2014: 1718-1726.
    Linial N, Mendelson S, Schechtman G, et al.. Complexity measures of sign matrices[J]. Combinatorica, 2007, 27(4): 439-463.
    Boyd S, Parikh N, Chu E, et al.. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.
    Shen Yuan, Wen Zai-wen, and Zhang Yin. Augmented lagrangian alternating direction method for matrix separation based on low-rank factorization[J]. Optimization Methods and Software, 2014, 29(2): 239-263.
    Hale E T, Yin Wo-tao, and Zhang Yin. Fixed-point continuation for Methodology and convergence[J]. SIAM Journal on Optimization, 2008, 19(3): 1107-1130.
    Lin Chih-jen. Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation, 2007, 19(10): 2756-2779.
    Daubechies I, Fornasier M, and Loris I. Accelerated projected gradient method for linear inverse problems with sparsity constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 764-792.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1717) PDF downloads(1302) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return