Advanced Search
Volume 38 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
LI Panchi, LI Guorui. Hybrid Quantum-inspired Neural Networks Model and Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(1): 111-118. doi: 10.11999/JEIT150444
Citation: LI Panchi, LI Guorui. Hybrid Quantum-inspired Neural Networks Model and Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(1): 111-118. doi: 10.11999/JEIT150444

Hybrid Quantum-inspired Neural Networks Model and Algorithm

doi: 10.11999/JEIT150444
Funds:

The National Natural Science Foundation of China (61170132), The Natural Science Foundation of Heilongjiang Province, China (F2015021), The Scientific and Technological Research Project of the Education Department of Heilongjiang Province, China (12541059)

  • Received Date: 2015-04-20
  • Rev Recd Date: 2015-08-21
  • Publish Date: 2016-01-19
  • To enhance the mapping ability of artificial neural networks, by studying the mapping mechanism of hidden layer neurons, a new idea of designing neural networks model based on rotation of qubits in the Bloch sphere is proposed in this paper. In the proposed approach, the samples are linearly transformed to quantum bit phase, and the qubits are rotated about three coordinate axes, respectively. The network parameters of hidden layer are the rotation angles. The spherical coordinates of qubits can be obtained by the projection measurement. The output of hidden layer neurons can be concluded by submitting these coordinates to excitation functions in hidden layer. The general neurons are applied to the output layer. The learning algorithms of the proposed model are designed based on the Levenberg-Marquardt (L-M) algorithm. The experimental results show that the proposed model is superior to the classical (L-M) algorthm in approximation ability, generalization ability, and robust performance.
  • loading
  • KAK S. On quantum neural computing[J]. Information Sciences, 1995, 83(3): 143-160.
    GOPATHY P and NICOLAOS B. Quantum Neural Networks (QNNs) inherently fuzzy feed-forward neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 679-693.
    VENTURA D and TONY M. Quantum associative memory with exponential capacity[C]. Proceedings of the IEEE International Joint Conference on Computational Intelligence, Piscataway, NJ, 1998: 509-513.
    AJIT N and TAMMY M. Quantum artificial neural network architectures and components[J]. Information Sciences, 2000, 128(3): 231-255.
    解光军, 庄镇泉. 量子神经网络[J]. 计算机科学, 2001, 28(7): 1-6.
    XIE G J and ZHUANG Z Q. Quantum neural network[J]. Computer Science, 2001, 28(7): 1-6.
    解光军, 范海秋, 操礼程. 一种量子神经计算网络模型[J]. 复旦学报(自然科学版), 2004, 43(5): 700-703.
    XIE G J, FAN H Q, and CAO L C. A quantum neural computational network model[J]. Journal of Fudan University (Natural Science), 2004, 43(5): 700-703.
    解光军, 周典, 范海秋. 基于量子门组单元的神经网络及其应用[J]. 系统工程理论与实践, 2005, 25(5): 113-117.
    XIE G J, ZHOU D, and FAN H Q. A neural network model based on quantum gates cell and its applications[J]. Systems Engineering Theory Practice, 2005, 25(5): 113-117.
    MAEDA M, SUENAGA M, and MIYAJIMA H. Qubit neuron according to quantum circuit for XOR problem[J]. Applied Mathematics and Computation, 2007, 185(2): 1015-1025.
    LI P C and LI S Y. Learning algorithm and application of quantum BP neural networks based on universal quantum gates[J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 167-174.
    李盼池. 一种量子神经网络模型学习算法及应用[J]. 控制理论与应用, 2009, 26(5): 531-534.
    LI P C. Learning algorithm and applications of the quantum neural networks model[J]. Control Theory Application, 2009, 26(5): 531-534.
    LI P C, SONG K P, and YANG E L. Model and algorithm of neural networks with quantum gated nodes[J]. Neural Network World, 2010, 20(2): 189-206.
    LI P C and XIAO H. A hybrid quantum-inspired neural networks with sequence inputs[J]. Neurocomputing, 2013, 117: 81-90.
    LI P C and XIAO H. Model and algorithm of quantum- inspired neural network with sequence input based on controlled rotation gates[J]. Application Intelligence, 2014, 40(1): 107-126.
    李盼池, 周红岩. 基于受控Hadamard门的量子神经网络模型及算法[J]. 计算机研究与发展, 2015, 52(1): 211-220.
    LI P C and ZHOU H Y. Model and algorithm of quantum neural network based on the controlled Hadamard gates[J]. Journal of Computer Research and Development, 2015, 52(1): 211-220.
    张翼鹏, 陈亮, 郝欢. 一种改进的量子神经网络训练算法[J]. 电子与信息学报, 2013, 35(7): 1630-1635. doi: 10.3724/SP.J. 1146.2012.01417.
    ZHANG Y P, CHEN L, and HAO H. An improved training algorithm for quantum neural networks[J]. Journal of Electronics Information Technology, 2013, 35(7): 1630-1635. doi: 10.3724/SP.J.1146.2012.01417.
    李楠, 侯旋. 自适应量子前向对传算法研究[J]. 电子与信息学报, 2013, 35(11): 2778-2783. doi: 10.3724/SP.J.1146.2013. 00101.
    LI N and HOU X. Research on adaptive quantum forward counter propagation algorithm[J]. Journal of Electronics Information Technology, 2013, 35(11): 2778-2783. doi: 10. 3724/SP.J.1146.2013. 00101.
    郭通, 兰巨龙, 李玉峰. 基于量子自适应粒子群优化径向基函数神经网络的网络流量预测[J]. 电子与信息学报, 2013, 35(9): 2220-2226. doi: 10.3724/SP.J.1146.2012.01343.
    GUO T, LAN J L, and LI Y F. Network traffic prediction with radial basis function neural network based on quantum adaptive particle swarm optimization[J]. Journal of Electronics Information Technology, 2013, 35(9): 2220-2226. doi: 10.3724/SP.J.1146.2012.01343.
    张铃, 张钹. M-P神经元模型的几何意义及其应用[J]. 软件学报, 1998, 9(5): 334-338.
    ZHANG L and ZHANG B. A geometrical representation of M-P neural model and its applications[J]. Journal of Software, 1998, 9(5): 334-338.
    张铃, 张钹, 殷海风. 多层前向网络的交叉覆盖设计算法[J]. 软件学报, 1999, 10(7): 737-742.
    ZHANG L, ZHANG B, and YIN H F. An alternative covering design algorithm of multi-layer neural networks[J]. Journal of Software, 1999, 10(7): 737-742.
    GIULIANO B, GIULIO C, and GIULIANO S. Principles of Quantum Computation and Information Volume I: Basic Concepts[M]. Singapore: World Scientific, 2004: 108-112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1292) PDF downloads(394) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return