Citation: | LI Panchi, LI Guorui. Hybrid Quantum-inspired Neural Networks Model and Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(1): 111-118. doi: 10.11999/JEIT150444 |
KAK S. On quantum neural computing[J]. Information Sciences, 1995, 83(3): 143-160.
|
GOPATHY P and NICOLAOS B. Quantum Neural Networks (QNNs) inherently fuzzy feed-forward neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 679-693.
|
VENTURA D and TONY M. Quantum associative memory with exponential capacity[C]. Proceedings of the IEEE International Joint Conference on Computational Intelligence, Piscataway, NJ, 1998: 509-513.
|
AJIT N and TAMMY M. Quantum artificial neural network architectures and components[J]. Information Sciences, 2000, 128(3): 231-255.
|
解光军, 庄镇泉. 量子神经网络[J]. 计算机科学, 2001, 28(7): 1-6.
|
XIE G J and ZHUANG Z Q. Quantum neural network[J]. Computer Science, 2001, 28(7): 1-6.
|
解光军, 范海秋, 操礼程. 一种量子神经计算网络模型[J]. 复旦学报(自然科学版), 2004, 43(5): 700-703.
|
XIE G J, FAN H Q, and CAO L C. A quantum neural computational network model[J]. Journal of Fudan University (Natural Science), 2004, 43(5): 700-703.
|
解光军, 周典, 范海秋. 基于量子门组单元的神经网络及其应用[J]. 系统工程理论与实践, 2005, 25(5): 113-117.
|
XIE G J, ZHOU D, and FAN H Q. A neural network model based on quantum gates cell and its applications[J]. Systems Engineering Theory Practice, 2005, 25(5): 113-117.
|
MAEDA M, SUENAGA M, and MIYAJIMA H. Qubit neuron according to quantum circuit for XOR problem[J]. Applied Mathematics and Computation, 2007, 185(2): 1015-1025.
|
LI P C and LI S Y. Learning algorithm and application of quantum BP neural networks based on universal quantum gates[J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 167-174.
|
李盼池. 一种量子神经网络模型学习算法及应用[J]. 控制理论与应用, 2009, 26(5): 531-534.
|
LI P C. Learning algorithm and applications of the quantum neural networks model[J]. Control Theory Application, 2009, 26(5): 531-534.
|
LI P C, SONG K P, and YANG E L. Model and algorithm of neural networks with quantum gated nodes[J]. Neural Network World, 2010, 20(2): 189-206.
|
LI P C and XIAO H. A hybrid quantum-inspired neural networks with sequence inputs[J]. Neurocomputing, 2013, 117: 81-90.
|
LI P C and XIAO H. Model and algorithm of quantum- inspired neural network with sequence input based on controlled rotation gates[J]. Application Intelligence, 2014, 40(1): 107-126.
|
李盼池, 周红岩. 基于受控Hadamard门的量子神经网络模型及算法[J]. 计算机研究与发展, 2015, 52(1): 211-220.
|
LI P C and ZHOU H Y. Model and algorithm of quantum neural network based on the controlled Hadamard gates[J]. Journal of Computer Research and Development, 2015, 52(1): 211-220.
|
张翼鹏, 陈亮, 郝欢. 一种改进的量子神经网络训练算法[J]. 电子与信息学报, 2013, 35(7): 1630-1635. doi: 10.3724/SP.J. 1146.2012.01417.
|
ZHANG Y P, CHEN L, and HAO H. An improved training algorithm for quantum neural networks[J]. Journal of Electronics Information Technology, 2013, 35(7): 1630-1635. doi: 10.3724/SP.J.1146.2012.01417.
|
李楠, 侯旋. 自适应量子前向对传算法研究[J]. 电子与信息学报, 2013, 35(11): 2778-2783. doi: 10.3724/SP.J.1146.2013. 00101.
|
LI N and HOU X. Research on adaptive quantum forward counter propagation algorithm[J]. Journal of Electronics Information Technology, 2013, 35(11): 2778-2783. doi: 10. 3724/SP.J.1146.2013. 00101.
|
郭通, 兰巨龙, 李玉峰. 基于量子自适应粒子群优化径向基函数神经网络的网络流量预测[J]. 电子与信息学报, 2013, 35(9): 2220-2226. doi: 10.3724/SP.J.1146.2012.01343.
|
GUO T, LAN J L, and LI Y F. Network traffic prediction with radial basis function neural network based on quantum adaptive particle swarm optimization[J]. Journal of Electronics Information Technology, 2013, 35(9): 2220-2226. doi: 10.3724/SP.J.1146.2012.01343.
|
张铃, 张钹. M-P神经元模型的几何意义及其应用[J]. 软件学报, 1998, 9(5): 334-338.
|
ZHANG L and ZHANG B. A geometrical representation of M-P neural model and its applications[J]. Journal of Software, 1998, 9(5): 334-338.
|
张铃, 张钹, 殷海风. 多层前向网络的交叉覆盖设计算法[J]. 软件学报, 1999, 10(7): 737-742.
|
ZHANG L, ZHANG B, and YIN H F. An alternative covering design algorithm of multi-layer neural networks[J]. Journal of Software, 1999, 10(7): 737-742.
|
GIULIANO B, GIULIO C, and GIULIANO S. Principles of Quantum Computation and Information Volume I: Basic Concepts[M]. Singapore: World Scientific, 2004: 108-112.
|