Advanced Search
Volume 38 Issue 2
Feb.  2016
Turn off MathJax
Article Contents
PAN Su, LIANG Yu, LIU Shengmei. A Multi-attribute Vertical Handoff Decision Algorithm Based on Motion Trend Quantification[J]. Journal of Electronics & Information Technology, 2016, 38(2): 269-275. doi: 10.11999/JEIT150443
Citation: PAN Su, LIANG Yu, LIU Shengmei. A Multi-attribute Vertical Handoff Decision Algorithm Based on Motion Trend Quantification[J]. Journal of Electronics & Information Technology, 2016, 38(2): 269-275. doi: 10.11999/JEIT150443

A Multi-attribute Vertical Handoff Decision Algorithm Based on Motion Trend Quantification

doi: 10.11999/JEIT150443
Funds:

The National Natural Science Foundation of China (61271235), Open Research Found of the National Mobile Communications Research Laboratory, Southeast University (2011D07), Priority Academic Program Development of Jiangsu Higher Education Institutions--Information and Communication Engineering

  • Received Date: 2015-04-20
  • Rev Recd Date: 2015-10-19
  • Publish Date: 2016-02-19
  • The base station will initiate handoff blindly and cause high failure rate of handoff if the knowledge of the terminal,s motion trend is absent. An optimized algorithm is proposed to optmize existing vertical handoff algorithm in the LTE-WiMAX heterogeneous wireless network system. The proposed algorithm uses the motion trend quantification to estimate goal cells and restrict unnecessary handoff so as to increase success rate of handoff. The computer simulation results in fading channel show that the optimized algorithm can reduce the failure rate of handoff during the handoff process and enhance the handoff performance of network.
  • loading
  • AHMED A, BOULAHIA L M, and GAITI D. Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification[J]. IEEE Communications Surveys Tutorials, 2014, 16(2): 776-811.
    LIM J and HONG D. Mobility and handover management for heterogeneous networks in LTE-advanced[J]. Wireless Personal Communications, 2013, 72(4): 2901-2912.
    KIM Y, KO H, PACK S, et al. Mobility-aware call admission control algorithm with handoff queue in mobile hotspots[J]. IEEE Transactions on Vehicular Technology, 2013, 62(8): 3903-3912.
    WANG S, FAN C, HSU C H, et al. A vertical handoff method via self-selection decision tree for internet of vehicles[J]. IEEE Systems Journal, 2014. doi: 10.1109/JSYST.2014.2306210.
    刘胜美, 孟庆民, 潘甦, 等. 异构无线网络中基于SINR和层次分析法的SAW垂直切换算法研究[J]. 电子与信息学报, 2011, 33(1): 235-239. doi: 10.3724/SP.J.1146.2010.00154.
    LIU S M, MENG Q M, PAN S, et al. A simple additive weighting vertical handoff algorithm based on SINR and AHP for heterogeneous wireless networks[J]. Journal of Electronics Information Technology, 2011, 33(1): 235-239. doi: 10.3724/SP.J.1146.2010.00154.
    ANUPAMA K S S, GOWRI S S, RAO B P, et al. An intelligent vertical handoff decision algorithm for geterogeneous wireless networks[C]. ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol. I, Visakhapatnam, 2014: 331-339.
    YANG P, SUN Y, LIU C, et al. A novel fuzzy logic based vertical handoff decision algorithm for heterogeneous wireless networks[C]. 2013 16th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC), Atlantic City, NJ, 2013: 1-5.
    BO S, LIN L, and FENG D. The multi-attribute vertical handoff algorithm based on node mobility[C]. 2014 5th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, 2014: 1146-1149.
    JOHNSON S B, NATH S, and VELMURUGAN T. An optimized algorithm for vertical handoff in heterogeneous wireless networks[C]. 2013 IEEE Conference on Information Communication Technologies (ICT), Jeju Island, 2013: 1206-1210.
    YANG T and RONG P. A fuzzy logic vertical handoff algorithm with motion trend decision[C]. 2011 6th IEEE International Forum on Strategic Technology (IFOST), Harbin, China, 2011, 2: 1280-1283.
    LI Bin and LIU Shengmei. Vertical handoff algorithm based on mobility prediction[J]. Communication and Network, 2013, 39(1): 93-95.
    GE Kun, JI Hong, and LI Xi. A speed sensitive vertical handoff algorithm based on fuzzy control[C]. 5th IEEE International Conference?on Wireless Communications, Networking and Mobile Computing, 2009. WiCom,09, Beijing, 2009: 1-4.
    马彬, 谢显中, 廖晓峰. 车辆异构网络中预测垂直切换算法[J]. 电子与信息学报, 2015, 37(4): 874-880. doi: 10.11999/ JEIT140845.
    MA B, XIE X Z, and LIAO X F. Prediction vertical handoff algorithm in vehicle heterogeneous network[J]. Journal of Electronics Information Technology, 2015, 37(4): 874-880. doi: 10.11999/JEIT140845.
    LEE S K, SRIRAM K, KIM K, et al. Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2009, 58(2): 865-881.
    OMHENI N, ZARAI F, OBAIDAT M S, et al. A novel vertical handoff decision making algorithm across Heterogeneous Wireless Networks[C]. 2014 IEEE International Conference on Computer, Information and Telecommunication Systems (CITS), 2014: 1-6.
    DENG S, YI X, DENG M, et al. Reduced-guard-interval OFDM using digital sub-band-demultiplexing[J]. IEEE Photonics Technology Letters, 2013, 25(22): 2174-2177.
    GAO X, WANG X, ZOU Y, et al. An efficient OFDM with adaptive guard interval for amplify and forward relay systems[C]. 2013 IEEE Vehicular Technology Conference (VTC Fall), 7. Las Vegas, NV, 2013: 1-5.
    杨赞, 赵辉, 赵玉萍. 基于循环平稳性的异构网OFDM系统窄带干扰消除[J]. 电子与信息学报, 2012, 34(9): 2208-2212. doi: 10.3724/SP.J.1146.2012.00144.
    YANG Z, ZHAO H, and ZHAO Y P. Cyclostationarity-based narrowband interference suppression for OFDM systems in heterogeneous networks[J]. Journal of Electronics Information Technology, 2012, 34(9): 2208-2212. doi: 10.3724/SP.J.1146.2012.00144.
    HAMAYDEH N, KHALIL A, BALI S, et al. The impact of mobile speed on vertical handover process between WiFi and WiMAX networks[C]. 2013 IEEE International RF and Microwave Conference (RFM), Penang, 2013: 138-143.
    MENG J and CHEN J. Doppler spread estimation for mobile OFDM systems[J]. Electronic Science and Technology, 2011, 24(6): 1-3.
    SINGHAPAN A, NAITO K, MORI K, et al. Doppler frequency spread estimation for OFDM systems in time-varying fading channel[C]. 2012 9th IEEE International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI- CON), Phetchaburi, 2012: 1-4.
    NISHAD P K and SINGH P. Carrier frequency offset estimation in OFDM systems[C]. 2013 IEEE Conference on Information Communication Technologies (ICT), Jeju Island, 2013: 885-889.
    LIN J, YE F, and REN J. Joint estimation for carrier frequency offset and sampling frequency offset in OFDM systems[C]. 2014 12th IEEE International Conference on Solid-state and Integrated Circuit Technology (ICSICT), Guilin, 2014: 1-3.
    GE X, TU S, HAN T, et al. Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models[J]. Networks, 2014, 4(2): 158-167.
    BIOMO J D M M, KUNZ T, and St-Hilaire M. An enhanced Gauss-Markov mobility model for simulations of unmanned aerial ad hoc networks[C]. Wireless and Mobile Networking Conference (WMNC), Vilamoura, 2014: 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1290) PDF downloads(345) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return