Advanced Search
Volume 38 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
HAN Yonghua, WANG Yaming, SUN Qi, ZHAO Yun. Crop Row Detection Based on Wavelet Transformation and Otsu Segmentation Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(1): 63-70. doi: 10.11999/JEIT150421
Citation: HAN Yonghua, WANG Yaming, SUN Qi, ZHAO Yun. Crop Row Detection Based on Wavelet Transformation and Otsu Segmentation Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(1): 63-70. doi: 10.11999/JEIT150421

Crop Row Detection Based on Wavelet Transformation and Otsu Segmentation Algorithm

doi: 10.11999/JEIT150421
Funds:

The National Natural Science Foundation of China (61272311), Zhejiang Provincial Natural Science Foundation (LZ15F020004), The Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory (ZSTUME 01B17), Graduate Student Innovation Research Project of Computer Application Innovation Key Subject (XDY14003), Science Foundation of Zhejiang Sci-Tech University (ZSTU) (13032156-Y), 521 Project of Zhejiang Sci-Tech University

  • Received Date: 2015-04-10
  • Rev Recd Date: 2015-09-13
  • Publish Date: 2016-01-19
  • Vision-based agricultural vehicle navigation has become a popular research area of automated guidance, however, crop row detection in high weeds field is still a challenging topic. An image segmentation method mainly based on frequency and color information is proposed to remove weeds. The algorithm is based on total frequency parameters, more total crop frequency, alternation regular of crop rows, Otsu method and color model transformation. The total frequency parameters are obtained from wavelet multi-resolution decomposition. The least square method is used in fitting straight line to detect the crop rows. Experiments show that the algorithm can effectively overcome the high weeds. The average processing time of a single pixels image is 132 ms.
  • loading
  • 张柏华, 马红光, 孙新利, 等. 基于正交约束的导航接收机空时自适应方法[J]. 电子与信息学报, 2015, 37(4): 900-906. doi: 10.1199/JEIT140740.
    ZHANG Baihua, MA Hongguang, SUN Xinli, et al. Space time adaptive processing technique based on orthogonal constraint in navigation receiver[J]. Journal of Electronics Information Technology, 2015, 37(4): 900-906. doi: 10.1199/ JEIT140740.
    姬长英, 周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9): 44-54.
    JI Changying and ZHOU Jun. Technical analysis of the development of agricultural machinery navigation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(9): 44-54.
    李骏扬, 金立左, 费树岷, 等. 基于多尺度特征表示的城市道路检测[J]. 电子与信息学报, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    李盛辉, 田光兆, 姬长英, 等. 自主导航农业车辆的全景视觉多运动目标识别跟踪[J]. 农业机械学报, 2015, 46(1): 1-7.
    LU Shenhui, TIAN Guangzhao, JI Changying, et al. Multiple moving objects tracking based on panoramic vision for autonomous navigation of agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(1): 1-7.
    KISE M, ZHANG Q, and ROVIRA M F. A stereovision-based crop row detection method for tractor-automated guidance[J]. Biosystems Engineering, 2005, 90(4): 357-367.
    ASTRAND B and BAERVELDT A J. A vision based row-following system for agricultural field machinery[J]. Mechatronics, 2005, 15(2): 251-269.
    Leemans V and Destain M F. A computer -vision based precision seed drill guidance assistance[J]. Computers and Electronics in Agriculture, 2007, 59(1-2): 1-12.
    BAKKER T, WOUTERS H, ASSELT K V, et al. A vision based row detection system for sugar beet[J]. Computers and Electronics in Agriculture, 2008, 60(1): 87-95.
    张志斌, 罗锡文, 周学成, 等. 基于Hough变换和Fisher准则的垄线识别算法[J]. 中国图象图形学报, 2007, 12(12): 2164-2168.
    ZHANG Zhibin, LUO Xiwen, ZHOU Xuecheng, et al. Crop rows detection based on Hough transform and fisher
    discriminant criterion function[J]. Journal of Image and
    Graphics, 2007, 12(12): 2164-2168.
    JI Ronghua and QI Lijun. A crop-row detection algorithm based on random hough transformation[J]. Mathematical and Computer Modelling, 2011, 54(3/4): 1016-1020.
    GUERRERO J M, GUIJARRO M, MONTALVO M, et al. Automatic expert system based on images for accuracy crop row detection in maize fields[J]. Expert Systems with Applications, 2013, 40(2): 656-664.
    姜国权, 王志衡, 赵翠君. 基于已知点的作物行检测方法[J]. 应用基础与工程科学学报, 2013, 21(5): 983-990.
    JIANG Guoquan, WANG Zhiheng, and ZHAO Cuijun. An algorithm of detecting crop rows based on known-points[J]. Journal of Basic Science and Engineering, 2013, 21(5): 983-990.
    胡炼, 罗锡文, 张智刚, 等. 株间除草装置横向偏移量识别与作物行跟踪控制[J]. 农业工程学报, 2013, 29(14): 8-14.
    HU Lian, LUO Xiwen, ZHANG Zhigang, et al. Side-shift offset identification and control of crop row tracking for intra-row mechanical weeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 8-14.
    MONTALVO M, PAJARES G, GUERRERO M, et al. Automatic detection of crop rows in maize fields with high weeds pressure[J]. Expert Systems with Applications, 2012, 39(15): 11889-11897.
    韩永华, 汪亚明, 康锋, 等. 基于小波多分辨率分解的农田障碍物检测[J]. 农业机械学报, 2013, 44(6): 215-221.
    HAN Yonghua, WANG Yaming, KANG Feng, et al. Detection of obstacles in farmland based on wavelet multi- resolution transform[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(6): 215-221.
    JIANG G Q, WANG Z H, and LIU H M. Automatic detection of crop rows based on multi-ROIs[J]. Expert Systems with Applications, 2015, 42(5): 2429-2441.
    SYLVAIN J, GILLES R, XAVIER H, et al. In-field crop row phenotyping from 3D modeling performed using structure from motion[J]. Computers and Electronics in Agriculture, 2015, 110(1): 70-77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1726) PDF downloads(427) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return