Advanced Search
Volume 37 Issue 12
Jan.  2016
Turn off MathJax
Article Contents
Cheng Zeng-fei, Zhao Yong-bo, Shui Peng-lang, Xu Bao-qing. Parameter Estimation Method of Incoherently Distributed Source via Sparse Representation[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2885-2890. doi: 10.11999/JEIT150340
Citation: Cheng Zeng-fei, Zhao Yong-bo, Shui Peng-lang, Xu Bao-qing. Parameter Estimation Method of Incoherently Distributed Source via Sparse Representation[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2885-2890. doi: 10.11999/JEIT150340

Parameter Estimation Method of Incoherently Distributed Source via Sparse Representation

doi: 10.11999/JEIT150340
Funds:

The Fundamental Research Fund for the Central Universities of China (K5051202047)

  • Received Date: 2015-03-23
  • Rev Recd Date: 2015-09-06
  • Publish Date: 2015-12-19
  • By analyzing the signal model of the Incoherently Distribute Source (IDS), a sparse representation based parameter estimation method of IDS is presented. Through using the Toeplitz characteristic and the two point approximation model as well as the Jacobi-Anger expansion model of the covariance matrix of the IDS, the angle spread and the central direction angle of the IDS is estimated by adopting two sparse representation problems. Compared with the present method, the proposed method does not need two dimensional searches and has low computational burden. Simulation results show that the proposed method has good parameter estimation performance in the low signal-to-noise ratio and small snapshot number scenario.
  • loading
  • Jantti T P. The influence of extended sources on the theoretical performance of the MUSIC and ESPRIT methods: Narrow-band sources[C]. Proceedings of International Conference on Acoustics, Speech and Signal Processing 1992, San Francisco, 1992: 429-432.
    Trump T and Ottersten B. Estimation of nominal direction of arrival and angular spread using an array of sensors[J]. Signal Processing, 1996, 50(2): 57-69
    Valaee S, Champagne B, and Kabal P. Parametric location of distribute source[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2144-2153.
    Meng Y, Stoica P, and Wong K M. Estimation of the direction of arrival of spatially dispersed signals in array processing[J]. IEE Proceedings-Radar, Sonar, and Navigation, 1996, 143(1): 1-9.
    Hassanien A, Shahbazpanshi S, and Gershman A B. A generalized Capon estimator for localization of multiple spread sources[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 280-283.
    Besson O and Stoica P. Decoupled estimation of DOA and angular spread for a spatially distributed source[J]. IEEE Transactions on Signal Processing, 2000, 48(8): 2185-2194.
    Bengtsson M and Ottersten B. Low-complexity estimator for distributed sources[J]. IEEE Transactions on Signal Processing, 2000, 48(7): 1872-1882.
    韩英华, 汪晋宽, 宋昕. 相干分布式信源二维波达方向估计算法[J]. 电子与信息学报, 2009, 31(2): 323-326.
    Han Ying-hua, Wang Jin-kuan, and Song Xin. 2D DOA estimation algorithm for coherently distributed source[J]. Journal of Electronics Information Technology, 2009, 31(2): 323-326.
    杨学敏, 李广军, 郑植. 基于稀疏表示的相干分布式非圆信号的参数估计[J]. 电子与信息学报, 2014, 36(1): 164-168.
    Yang Xue-min, Li Guang-jun, and Zheng Zhi. Parameter estimation of coherently distributed non-circular signal based on sparse representation[J]. Journal of Electronics Information Technology, 2014, 36(1): 164-168.
    Han K Y and Nehorai A. Distributed source processing with nested linear array[C]. IEEE 8th Sensor Array and Multichannel Signal Processing Workshop, Coruna, 2014: 521-524.
    Yang X M, Li G J, Zhang Z, et al.. Low-complexity 2D central angle estimation of coherently distributed sources with cross-correlation matrix[J]. Electronics Letters, 2014, 50(16): 1118-1120.
    Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Maganize, 2008, 25: 21-30.
    Zheng J and Kaveh M. Sparse spatial spectral estimation: a covariance fitting algorithm, performance and regulation[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2767-2777.
    Wang J, Sheng W X, Han Y B, et al.. Adaptive beamforming with compressed sensoring for sparse receiving array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 823-833.
    Zhao T, Eldar Y C, and Nehorai A. Direction of arrival estimation using co-prime arrays: a super resolution viewpoint[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5565-5576.
    Yang Z, Xie L H, and Zhang C S. A discretization-free sparse and parametric approach for linear array processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959-4973.
    David W and Srikantan N. Iterative reweighted and methods for finding sparse solutions[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 317-329.
    Ba D, Babadi B, Purdon P L, et al.. Convergence and stability of iteratively re-weighted least squares algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(1): 183-195.
    Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1215) PDF downloads(492) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return