Advanced Search
Volume 37 Issue 12
Jan.  2016
Turn off MathJax
Article Contents
Chen Peng, Meng Chen, Wang Cheng. Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327
Citation: Chen Peng, Meng Chen, Wang Cheng. Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327

Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames

doi: 10.11999/JEIT150327
Funds:

The National Natural Science Foundation of China (61372039)

  • Received Date: 2015-03-20
  • Rev Recd Date: 2015-08-24
  • Publish Date: 2015-12-19
  • The sampling system based on Gabor frames with exponential reproducing windows holds nice performance for short pulses in general cases, but when the frames are highly redundant, the traditional coefficient oriented methods for subspace detection may fail or have large error. Firstly, the signal oriented idea is introduced and the blocked dual Gabor dictionaries are constructed, finishing the block sparse representation. By introducing the blocked dictionaries, the measurement matrix is constructed and the block-coherence restricted by the coherence of the dictionaries is proposed. Consequently, the synthesis model for signal representation is introduced to subspace detection based on Multiple Measurement Vector problem and the Simultaneous Orthogonal Matching Pursuit is proposed based on blocked-closure(SOMPB,F), using for subspace detection. Additionally, the convergence of the algorithm is proved. At last, simulation experiments prove that the new method improves the recovery rate, decreases the channel numbers and enforces the robustness of the sampling system compared with the traditional methods.
  • loading
  • Park S and Park J. Compressed sensing MRI exploiting complementary dual decomposition[J]. Medical Image Analysis, 2014, 18(3): 472-486.
    王忠良, 冯燕, 贾应彪. 基于线性混合模型的高光谱图像谱间压缩感知重构[J]. 电子与信息学报, 2014, 36(11): 2737-2743.
    Wang Zhong-liang, Feng Yan, and Jia Ying-biao. Reconstruction of hyperspectral images with spectral compressive sensing based on linear mixing models[J]. Journal of Electronics Information Technology, 2014, 36(11): 2737-2743.
    张京超, 付宁, 乔立岩, 等. 一种面向信息带宽的频谱感知方法研究[J]. 物理学报, 2014, 63(3): 030701.
    Zhang Jing-chao, Fu Ning, Qiao Li-yan, et al.. Investigation of information bandwidth oriented spectrum sensing method[J]. Acta Physica Sinica, 2014, 63(3): 030701.
    Omer B and Eldar Y C. Sub-Nyquist radar via doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811.
    Herman M A and Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
    Razzaque M A, Bleakley C, and Dobson S. Compression in wireless sensor networks: a survey and comparative evaluation[J]. ACM Transactions on Sensor Networks, 2013, 10(1): Article No. 5.
    Michaeli T and Eldar Y C. Xampling at the rate of innovation[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1121-1133.
    Urigiien J A, Eldar Y C, and Dragotti P L. Compressed Sensing: Theory and Applications[M]. Cambridge, U.K.: Cambridge University Press, 2012: 148-213.
    Matusiak E and Eldar Y C. Sub-Nyquist sampling of short pulses[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1134-1148.
    陈鹏, 孟晨, 孙连峰, 等. 基于指数再生窗 Gabor 框架的窄脉冲欠 Nyquist 采样与重构[J]. 物理学报, 2014, 67(7): 070701.
    Chen Peng, Meng Chen, Sun Lian-feng, et al.. Sub-Nyquist sampling and reconstruction of short pulses based on Gabor frames with exponential reproducing windows[J]. Acta Physica Sinica, 2015, 64(7): 070701.
    Mishali M, Eldar Y C, and Elron A J. Xampling: signal acquisition and processing in union of subspaces[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4719-4734.
    Candes E J, Eldar Y C, Needell D, et al.. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73.
    Giryes R and Elad M. Can we allow linear dependencies in the dictionary in the sparse synthesis framework?[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5459-5463.
    Blanchard J D, Cermak M, Hanle D, et al.. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694-1704.
    Kloos T and St?ckler J. Zak transforms and gabor frames of totally positive functions and exponential B-splines[J]. Journal of Approximation Theory, 2014, 184(5): 209-237.
    Qiu S and Feichtinger H G. Discrete Gabor structures and optimal representations[J]. IEEE Transactions on Signal Processing, 1995, 43(10): 2258-2268.
    Qiu S. Block-circulant Gabor-matrix structure and discrete Gabor transforms[J]. Optical Engineering, 1995, 34(10): 2872-2878.
    Janssen A. Representations of Gabor Frame Operators[M]. Netherlands, Springer, 2001: 73-101.
    Casazza P G, Christensen O, and Janssen A. WeylHeisenberg frames, translation invariant systems and the Walnut representation[J]. Journal of Functional Analysis, 2001, 180(1): 85-147.
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
    Leviatan D and Temlyakov V N. Simultaneous greedy approximation in Banach spaces[J]. Journal of Complexity, 2005, 21(3): 275-293.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1072) PDF downloads(464) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return