Citation: | Yang Xing-ming, Wu Ke-wei, Sun Yong-xuan, Xie Zhao. Modified Covariate-shift Multi-source Ensemble Method in Transferability Metric[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323 |
Tommasi T, OrabonaF, and Caputo B. Learning categories from few examples with multi model knowledge transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 928941.
|
Yao Y and Doretto G. Boosting for transfer learning with multiple sources[C]. Proceedings of Computer Vision and Pattern Recognition, San Francisco, 2010: 18551862.
|
Long M S, Wang J M, Ding G G, et al.. Adaptation regularization a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 10761089.
|
Lin D, An X, and Zhang J. Double-bootstrapping source data selection for instance-based transfer learning[J]. Pattern Recognition Letters, 2013, 34(11): 12791285.
|
Kuzborskij I, Orabona F, and Caputo B. From N to N+1: multiclass transfer incremental learning[C]. Proceedings of Computer Vision and Pattern Recognition, Portland, 2013: 33583365.
|
Zhu Y, Chen Y Q, Lu Z Q, et al.. Heterogeneous transfer learning for image classification[C]. Proceedings of AAAI Conference on Artificial Intelligence, San Francisco, 2011: 13041309.
|
张倩, 李明, 王雪松, 等. 一种面向多源领域的实例迁移学习[J]. 自动化学报, 2014, 40(6): 1176-1183.
|
Zhang Qian, Li Ming, Wang Xue-song, et al.. Instance-based transfer learning for multi-source domains[J]. Acta Automatica Sinica, 2014, 40(6): 11761183.
|
Pang J, Huang Q, Yan S, et al.. Transferring boosted detectors towards viewpoint and scene adaptiveness[J]. IEEE Transactions on Image Processing, 2011, 20(5): 13881400.
|
Li G, Qin L, Huang Q, et al.. Treat samples differently: object tracking with semi-supervised online CovBoost[C]. Proceedings of International Conference on Computer Vision, Barcelona, 2011: 627634.
|
Qi G J, Aggarwal C, Rui Y, et al.. Towards cross-category knowledge propagation for learning visual concepts[C]. Proceedings of Computer Vision and Pattern Recognition, Colorado Springs, 2011: 897904.
|
Chu W S, Torre F D, and CohnJ F. Selective transfer machine for personalized facial action unit detection[C]. Proceedings of Computer Vision and Pattern Recognition, Portland, 2013: 35153522.
|
Yang S Z, Hou C P, Zhang C S, et al.. Robust non-negative matrix factorization via joint sparse and graph regularization for transfer learning[J]. Neural Computing and Applications, 2013, 23(2): 541559.
|
方耀宁, 郭云飞, 丁雪涛, 等. 一种基于标签迁移学习的改进正则化奇异值分解推荐算法[J]. 电子与信息学报, 2013, 35(12): 30463050.
|
Fang Yao-ning, Guo Yun-fei, Ding Xue-tao, et al.. An improved regularized singular value decomposition recommender algorithm based on tag transfer learning[J]. Journal of Electronics Information Technology, 2013, 35(12): 30463050.
|
Gopalan R. Learning cross-domain information transfer for location recognition and clustering[C]. Proceedings of Computer Vision and Pattern Recognition, Portland, 2013: 731738.
|
Luo Y, Liu T L, Tao D C, et al.. Decomposition-based transfer distance metric learning for image classification[J]. IEEE Transactions on Image Processing, 2014, 23(9): 37893801.
|
Long M S, Wang J M, Ding G G, et al.. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 18051818.
|
洪佳明, 印鉴, 黄云, 等. TrSVM: 一种基于领域相似性的迁移学习算法[J]. 计算机研究与发展, 2011, 48(10): 18231830.
|
Hong Jia-ming, Yin Jian, Huang Yun, et al.. TrSVM: a transfer learning algorithm using domain similarity[J]. Journal of Computer Research and Development, 2011, 48(10): 18231830.
|
Seah C W, Tsang I W, and Ong Y S. Transfer ordinal label learning[J]. IEEE Transactions on Neural Networkand Learning System, 2013, 24(11): 18631876.
|
许敏, 王士同, 史荧中. 一种新的面向迁移学习的L2核分类器[J]. 电子与信息学报, 2013, 35(9): 2059-2065.
|
Xu Min, Wang Shi-tong, and Shi Ying-zhong. A novel transfer-learning-oriented L2 kernel classifier[J]. Journal of Electronics Information Technology, 2013, 35(9): 20592065.
|
Long M S, Wang J M, Ding G G, et al.. Transfer feature learning with joint distribution adaptation[C]. Proceedings of International Conference on Computer Vision, Sydney, 2013: 22002207.
|
Patricia N and Caputo B. Learning to learn, from transfer learning to domain adaptation: a unifying perspective[C]. Proceedings of Computer Vision and Pattern Recognition, Columbus, 2014: 14421449.
|
Zhang B, Wang Y, Wang Y, et al.. Stable learning in coding space for multi-class decoding and its extension for multi-class hypothesis transfer learning[C]. Proceedings of Computer Vision and Pattern Recognition, Columbus, 2014: 10751081.
|
Gretton A, Smola A, Huang J, et al.. Covariate Shift by Kernel Mean Matching[M]. Cambridge: MIT Press, 2009: 131160.
|
Huang P P, Wang G, and Qin S Y. Boosting for transfer learning from multiple data sources[J]. Pattern Recognition Letters, 2012, 33(5): 568579.
|
Nie Q F, Jin L Z, and Fei S M. Probability estimation for multi-class classification using AdaBoost[J]. Pattern Recognition, 2014, 47(12): 39313940.
|
Sugiyama M, Krauledat M, and Mller K R. Covariate shift adaptation by importance weighted cross validation[J]. The Journal of Machine Learning Research, 2007, 8(1): 9851005.
|
Choi M J, Lim J J, Torralba A, et al.. Exploiting hierarchical context on a large database of object categories[C]. IEEE Conference on Computer Vision Pattern Recognition, San Frencisco, CA, 2010: 129136.
|
Han Y and Liu G. Biologically inspired task oriented gist model for scene classification[J]. Computer Vision and Image Understanding, 2013, 117(1): 7695.
|
1. | 张艳睛,龙伟军,潘明海. 射频辐射源的高精度参数估计. 现代电子技术. 2022(15): 63-68 . ![]() | |
2. | 陈万里,李伟,柴远波. 一种低信噪比下的LFM脉冲信号起始频率校正方法. 火力与指挥控制. 2021(02): 58-63 . ![]() | |
3. | 孙同晶,刘桐,杨阳. 多阶次分数阶傅里叶域特征融合的主动声呐目标稀疏表示分类方法. 电子与信息学报. 2021(03): 809-816 . ![]() | |
4. | 李亚利,刘佳. 基于非平稳信号时频分析的DDoS攻击检测仿真. 计算机仿真. 2021(05): 353-356+370 . ![]() | |
5. | 张玉,李天琪,张进,唐波. 基于集成固有时间尺度分解的IFF辐射源个体识别算法. 电子与信息学报. 2020(02): 430-437 . ![]() | |
6. | 邬俊阳,陈欣. 基于迭代搜索的线性调频脉冲信号参数估计方法. 探测与控制学报. 2020(04): 39-46 . ![]() | |
7. | 林江刚,胡正新,李晶,翟怡萌,邓艾东. 低转速下基于AE信号与LMD的滚动轴承故障诊断. 动力工程学报. 2019(04): 293-298 . ![]() | |
8. | 刘会杰,高新海,郭汝江. 一种低副瓣无混叠的线性调频信号时频分析方法. 电子与信息学报. 2019(11): 2614-2622 . ![]() | |
9. | 林江刚,胡正新,李晶,翟怡萌,邓艾东. 基于AE信号与VMD的滚动轴承故障诊断研究. 燃气轮机技术. 2018(03): 34-38 . ![]() | |
10. | 欧国建,张淑芳,邓剑勋,蒋清平. 利用FFT实现对LFM信号的快速稀疏分解. 数据采集与处理. 2018(05): 865-871 . ![]() | |
11. | 孙湘,华钢. 生物特征信号提纯算法的设计与实现. 生物医学工程研究. 2018(04): 492-495 . ![]() | |
12. | 陈小龙,关键,黄勇,于晓涵,刘宁波,董云龙,何友. 雷达低可观测动目标精细化处理及应用. 科技导报. 2017(20): 19-27 . ![]() |