Advanced Search
Volume 38 Issue 2
Feb.  2016
Turn off MathJax
Article Contents
LIU Yongjun, LIAO Guisheng, YANG Zhiwei, XU Jingwei. A Super-resolution Design Method for Integration of OFDM Radar and Communication[J]. Journal of Electronics & Information Technology, 2016, 38(2): 425-433. doi: 10.11999/JEIT150320
Citation: LIU Yongjun, LIAO Guisheng, YANG Zhiwei, XU Jingwei. A Super-resolution Design Method for Integration of OFDM Radar and Communication[J]. Journal of Electronics & Information Technology, 2016, 38(2): 425-433. doi: 10.11999/JEIT150320

A Super-resolution Design Method for Integration of OFDM Radar and Communication

doi: 10.11999/JEIT150320
Funds:

The National Natural Science Foundation of China (61231017)

  • Received Date: 2015-03-17
  • Rev Recd Date: 2015-11-03
  • Publish Date: 2016-02-19
  • The traditional OFDM radar is usually without regard to transmit communication information. A new radar transmitting pattern based on OFDM is designed to realize the integration of radar and communication. And a new method based on compensated communication information is proposed to achieve joint high-resolution estimation of targets ranges and velocities. In the designed radar transmitting pattern, the radar transmits pulse consisting of multi-OFDM symbols and the communication function is realized within the pulse. During coherent processing interval, the subspace projection method is used to obtain the joint super-resolution estimation of ranges and velocities of targets after the echo data is compensated using communication information and induced non-coherent. Theoretical analysis and simulation results show that the proposed method can obtain the joint super-resolution estimation of targets distances and velocities under the condition of guaranteeing the communication function.
  • loading
  • 杨熙, 戎华, 王君可. 雷达-电子战-通信一体化系统雷达侦察作战效能模型研究[J]. 科技信息, 2014(13): 220-221. doi: 10.3969/j.issn.1001-9960.2014.13.155.
    YANG Xi, RONG Hua, and WANG Junke. Integration of radio-electronic-warfare-communication radar reconnaissance system operational effectiveness model research[J]. Science and Technology Information, 2014(13): 220-221. doi: 10.3969/ j.issn.1001-9960.2014.13.155.
    TAVIK G, HILTERBRICK C, EVINS J, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009-1020. doi: 10.1109/TMTT.2005.843485.
    HAN Liang and WU Ke. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879-1892. doi: 10.1109/TMTT.2011.2138156.
    HAN Liang and WU Ke. 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 619-631. doi: 10.1109/TMTT. 2011.2179552.
    姚誉, 高峻, 吴乐南, 等. 基于双频EBPSK-MODEM的雷达通信机研究[J]. 电子与信息学报, 2014, 36(8): 1786-1791. doi: 10.3724/SP.J.1146.2013.01371.
    YAO Yu, GAO Jun, and WU Lenan, et al. Studies of a dual- frequency EBSPK-MODEM based radar-communication transceiver[J]. Journal of Electronics Information Technology, 2014, 36(8): 1786-1791. doi: 10.3724/SP.J. 1146.2013.01371.
    TAKAHARA H, OHNO K, and ITAMI M. A study on UWB radar assisted by inter-vehicle communication for safety applications[C]. 2012 IEEE International Conference on Vehicular Electronics and Safety, Turkey, 2012: 99-104. doi: 10.1109/ICVES.2012.6294272.
    MISHRA A K and Inggs M. FOPEN capabilities of commensal radars based on whitespace communication systems[C]. Electronics, Computing and Communication Technologies (IEEE CONECCT), Bangalore, 2014: 1-5. doi: 10.1109/CONECCT.2014.6740313.
    TAKASE H and SHINRIKI M. A dual-use radar and communication system with complete complementary codes[C]. 2014 15th International, Radar Symposium(IRS), Gdansk, 2014: 16-18. doi: 10.1109/IRS.2014.6869268.
    李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(2): 406-412. doi: 10.3724/SP.J.1146.2012.00567.
    LI Xiaobai, YANG Ruijuan, and CHENG Wei. Integrated radar and communication based on multiearrier frequency modulation Chirp signal[J]. Journal of Electronics Information Technology, 2013, 35(2): 406-412. doi: 10.3724/ SP.J.1146.2012.00567.
    SIT Y L and ZWICK T. MIMO OFDM radar with communication and interference cancellation features[C]. 2014 IEEE Radar Conference, Cincinnati, 2014: 19-23. doi: 10.1109/RADAR.2014.6875596.
    SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, AP-34(3): 276-280. doi: 10.1109/TAP. 1986.1143830.
    OZIEWICZ M. On application of MUSIC algorithm to time delay estimation in OFDM channels[J]. IEEE Transactions on Broadcasting, 2005, 51(2): 249-255. doi: 10.1109/TBC. 2005.846193.
    ZHANG Tianxian and XIA Xianggen. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 394-404. doi: 10.1109/TGRS.2014.2322813.
    SEN S. OFDM radar space-time adaptive processing by exploiting spatio-temporal sparsity[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 118-130. doi: 10.1109/TSP. 2012.2222387.
    张卫, 唐希源, 顾红, 等. OFDM雷达信号模糊函数分析[J]. 南京理工大学学报, 2011, 35(4): 513-518. doi: 10.3969/ j.issn.1005-9830.2011.04.018.
    ZHANG Wei, TANG Xiyuan, GU Hong, et al. Ambiguity function analysis of OFDM radar signals[J]. Journal of Nanjing University of Science and Technology, 2011, 35(4): 513-518. doi: 10.3969/j.issn.1005-9830.2011.04.018.
    施祥同, 王虎, 陈建军, 等. OFDM雷达信号的宽带模糊函数性能分析[J]. 雷达科学与技术, 2010, 8(6): 554-558. doi: 10.3969/j.issn.1672-2337.2010.06.013.
    SHI Xiangtong, WAN Hu, CHEN Jianjun, et al. Wideband ambiguity function of OFDM radar signal[J]. Radar Science and Technology, 2010, 8(6): 554-558. doi: 10.3969/j.issn. 1672-2337.2010.06.013.
    SEN S and NEHORAI A. Sparsity-based multi-target tracking using OFDM radar[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1902-1906. doi: 10.1109/TSP.2010. 2103064.
    STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236-1259. doi: 10.1109/JPROC.2011.2131110.
    赵兴运, 张群, 娄昊, 等. 基于OFDM 随机步进频的雷达通信一体化信号模型[J]. 电讯技术, 2014, 54(8): 1107-1112. doi: 10.3969/j.issn.1001-893x.2014.08.013.
    ZHAO Xingyun, ZHANG Qun, LOU Hao, et al. A signal model for integration of radar and communication based on random stepped-frequency OFDM radar pulses[J]. Telecommunication Engineering, 2014, 54(8): 1107-1112. doi: 10.3969/j.issn.1001-893x.2014.08.013.
    IEEE Std 802.11a-1999. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band[S]. 1999.
    WU X H, KISHK A A, and GLISSON A W. MIMO-OFDM radar for direction estimation[J]. IET Radar, Sonar Navigation, 2010, 4(1): 28-36. doi: 10.1049/iet-rsn.2008.0152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2536) PDF downloads(643) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return