Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
SHEN Fan, CHEN Jianjun, CHI Yaqing, LIANG Bin, WANG Xun, WEN Yi, GUO Hao. Single Event Transient Analysis and Hardening in a Low-Dropout Regulator[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3965-3972. doi: 10.11999/JEIT230438
Citation: Yi Xiao-lei, Peng Si-long, Luan Shi-chao. An Approach of Adaptive Signal Separation Based on Operator and Locally Orthogonal Constraint[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2613-2620. doi: 10.11999/JEIT150318

An Approach of Adaptive Signal Separation Based on Operator and Locally Orthogonal Constraint

doi: 10.11999/JEIT150318
Funds:

The National Natural Science Foundation of China (61032007, 61201375)

  • Received Date: 2015-03-17
  • Rev Recd Date: 2015-06-12
  • Publish Date: 2015-11-19
  • An operator-based approach for adaptive signal separation is proposed by using the locally orthogonal constraint and adopting back projection strategy. The approach adaptively separates a signal into additive subcomponents and a residual signal, where the subcomponents are in the null space of the operators. Experiments, including simulated signals and a real-life signal, demonstrate the feasibility, efficiency, and practicability of the proposed approach for solving the mode mixing phenomenon.
  • Huang N E , Shen Z, and Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
    Yu D J, Cheng J S, and Yang Y. Application of emd method and hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005, 19(2): 259-270.
    Pai P F and Palazotto A N. Hht-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems[J]. International Journal of Mechanical Sciences, 2008, 50(12): 1619-1635.
    Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London(series A),1998, 454(1971): 903-995.
    Peng S L and Hwang W L. Adaptive signal decomposition based on local narrow band signals[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2669-2676.
    Peng S L and Hwang W L. Null space pursuit: An operator-based approach to adaptive signal separation[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2475-2483.
    Mallat S and Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    Vese L and Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. Journal of Scientific Computing, 2003, 19(3): 553-572.
    Bobin J, Starck J L, Fadili J M, et al.. Morphological component analysis: an adaptive thresholding strategy[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2675-2683.
    Yi X L, Hu X Y, and Peng S L. An operator-based and sparsity-based approach to adaptive signal separation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Vancouver, BC, 2013: 6186-6190.
    Hu X Y, Peng S L, and Hwang W L. Multicomponent am-fm signal separation and demodulation with null space pursuit[J]. Signal, Image and Video Processing, 2013, 7(6): 1093-1102.
    肖维维, 栾卫军, 彭思龙. 基于三阶线性微分算子的零空间追踪算法[J]. 系统工程理论与实践, 2013, 33(5): 1283-1288.
    Xiao Wei wei, Luan Wei jun, and Peng si long. Null space pursuit based on the three order linear differentialoperator[J]. Systems EngineeringTheory Practice, 2013, 33(5): 1283-1288.
    Hu X Y, Peng S L, and Hwang W L. An integral operator based adaptive signal separation approach[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Vancouver, BC, 2013: 6103-6107.
    Hu X Y, Peng S L, and Hwang W L. Adaptive integral operators for signal separation[J]. Signal Processing Letters, 2015, 22(9): 1383-1387.
    Wu Z H and Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    Deering R and Kaiser J F. The use of a masking signal to improve empirical mode decomposition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Philadelphia, Pennsylvania, USA, 2005: 18-23.
  • Cited by

    Periodical cited type(3)

    1. 邹灵果,张美花. 基于数理统计特征的人机交互图像手势识别. 黑龙江工业学院学报(综合版). 2024(01): 97-104 .
    2. 李欣馨. 改进小组合作学习模式在高职院校动漫专业课程中的应用. 陕西教育(高教). 2024(04): 76-78 .
    3. 刘强,吴德佩. 高帧频虚拟图像无损防失真压缩算法仿真. 计算机仿真. 2023(12): 252-255+352 .

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1269) PDF downloads(622) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return