Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
Zhang Yuan-yuan, Wu Zhen-sen, Cao Yun-hua, Zhang Yu-shi. Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2749-2755. doi: 10.11999/JEIT150301
Citation: Zhang Yuan-yuan, Wu Zhen-sen, Cao Yun-hua, Zhang Yu-shi. Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2749-2755. doi: 10.11999/JEIT150301

Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces

doi: 10.11999/JEIT150301
Funds:

The National Natural Science Foundation of China (61172031)

  • Received Date: 2015-03-11
  • Rev Recd Date: 2015-06-29
  • Publish Date: 2015-11-19
  • Bistatic radar has an advantage in the anti-stealth and low altitude defense, but the bistatic scattering data measured from the terrian surface are extremely scarce. To solve this problem, the genetic algorithms and the backscattering data from the soil, concrete and the sand surface in L/S/X/Ku band are used to retrieve the effective permittivity and the roughness parameters of the land, and then the bistatic scattering data are predicted. The research above proves that the land equivalent surface scattering model is effective. The bistatic scattering echo increases with frequency, and it first increases and then decreases along with the scattering angles, first decreases and then increases along with the scattering azimuth angles. The minimum value of the bistatic scattering echo always appears in the 90 degree azimuth angles for the HH polarization, and it shifts from 90 degree azimuth angles to the small angle direction for the VV polarization. And also it is related to incident frequency, the moisture and the roughness of land. The bistatic scattering characteristics of land surface can be used for the anti-stealth research and the inversion of the land parameters.
  • loading
  • Schlund M, Poncet F V, Hoekman D H, et al.. Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring[J]. Remote Sensing of Environment, 2014, 151(8): 16-26.
    Gupta D K, Kumar P, Mishara V N, et al.. Bistatic measurements for the estimation of Rice crop variables using artifical neural network[J]. Advances in Space Reasearch, 2015(55): 1613-1623.
    Nashashibi A Y and Ulaby F T. MMW polarimetric radar bistatic scattering from a random surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1743-1755.
    Johnson J T and Ouellette J D. Polarization features in bistatic scattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1616-1626.
    Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing[M]. Massachusetts: Artech House, 1990, Vol. 2, Chapter 11.
    Panciera R, Tanase M A, Lowell K, et al.. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4966-4979.
    张文吉, 张晓娟, 李芳. 分层土壤后向散射及其在深层土壤湿度探测中的应用[J]. 电子与信息学报, 2008, 30(9): 2107-2110.
    Zhang Wen-ji, Zhang Xiao-juan, and Li Fang. Backscattering from multilayer soil and its application to deep soil moisture estimation[J]. Journal of Electronics Information Technology, 2008, 30(9): 2107-2110.
    Tabatabaeenejad A, Burgin M, Duan X Y, et al.. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first AirMOSS results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 645-658.
    Nashashibi A Y, Sarabandi K, Al-Zaid F A, et al.. An empirical model of volume scattering from dry sand-covered surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3673-3682.
    Sarabandi K, Li E S, and Nashashibi A. Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 45(11): 1679-1688.
    De Roo R D and Ulaby F T. Bistatic specular scattering from rough dielectric surfaces[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 220-231.
    Khadhra K B, Boerner T, Hounam D, et al.. Surface parameter estimation using bistatic polarimetric X-band measurements[J]. Progress In Electromagnetics Research B, 2012, 39: 197-223.
    Mattia F, Davidson M, Le T T, et al.. Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1651-1658.
    Su Z, Trochp A, and De Troch F P. Remote sensing of bare surface soil moisture using EMAC/ESAR data[J]. International Journal of Remote Sensing, 1997, 18(10): 2105-2124.
    Baghdadi N, King C, Chanzy A, et al.. An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils[J]. International Journal of Remote Sensing, 2002, 23(20): 4325-4340.
    Lievens H and Verhoest N E C. On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 740-744.
    吕玉增, 刘永祥, 曹敏, 等. 基于遗传算法的一维散射散射中心提取研究[J]. 电子与信息学报, 2006, 28(1): 36-40.
    L Yu-zeng, Liu Yong-xiang, Cao-min, et al.. 1-D scattering centers extraction technique based on genetic algorithm[J]. Journal of Electronics Information Technology, 2006, 28(1): 36-40.
    严韬, 陈建文, 鲍拯. 基于改进遗传算法的天波超视距雷达二维阵列稀疏优化设计[J]. 电子与信息学报, 2014, 36(2): 3014-3020.
    Yan Tao, Chen Jian-wen, and Bao Zheng. Optimization design of sparse 2-D arrays for over-the-horizon radar (OTHR) based on improved genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(2): 3014-3020.
    Wu T D, Chen K S, Shi Jian-cheng, et al.. A study of an AIEM model for bistatic scattering from randomly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2584-2598.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1372) PDF downloads(563) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return